
Jurnal Teknologi Maklumat & Multimedia 2(2005): 81-103

Standards and Tools in Production and
Maintenance of System Documentation

SHAHIDA SULAIMAN, NORBIK BASHAH IDRIS &

SHAMSUL SAHIBUDDIN

ABSTRACT

Implementation of a standard in a software development or maintenance
process will provide guidelines on how to conduct the activities in the phases
of software life cycle including the documentation to be produced. In
addition, the use of Computer-Aided Software Engineering tools or workbenches
can automate parts of documenting activities. Despite the importance of
standard and tools to be utilised, they are still not widely used. Thus,
software engineers still confront with the problems related to documentation
particularly system documentation. This paper presents the result of a survey
in Malaysia with the main goal to study software engineers’ current practice
in production and maintenance of documentation based on characteristic,
behavior, belief and attitude. Finally, we highlight on what kind of tools
should be introduced, why it is introduced and when or how it should be
introduced to support the practice.

ABSTRAK

Pelaksanaan sesuatu piawai di dalam proses pembangunan atau pengubah-
suaian akan menghasilkan garis panduan bagaimana menjalankan aktiviti-
aktiviti di dalam fasa-fasa kitar hidup perisian termasuk dokumentasi yang
perlu dihasilkan. Di samping itu juga, penggunaan alat kejuruteraan perisian
berbantukan komputer atau ‘workbenches’ boleh mengautomasikan sebahagian
daripada aktiviti-aktiviti dokumentasi dengan lebih piawai. Walaupun
kepentingan piawai dan alat-alat tersebut boleh dimanfaatkan, tetapi
pembangun sistem masih tidak menggunakannya secara meluas. Jurutera-
jurutera perisian masih berhadapan dengan masalah-masalah berkaitan
dengan dokumentasi terutamanya dokumentasi sistem. Rencana ini bertujuan
untuk membentangkan hasil kaji selidik yang telah dijalankan di Malaysia.
Matlamat utama kajian adalah untuk mengkaji amalan semasa jurutera-
jurutera perisian di dalam penghasilan dan pengubahsuaian dokumentasi
berdasarkan sifat, tingkah laku, kepercayaan dan sikap. Hasil kajian juga
dapat mengenal pasti apakah jenis alat yang perlu diperkenalkan, kenapa ia
diperkenalkan dan bila atau bagaimana ia harus diperkenalkan untuk
menyokong amalan tersebut.

06- Shahida Sulaiman 4/26/05, 8:55 AM81

82

INTRODUCTION

System documentation (SD) is an important source of software understanding.
Having system documentation, a system is easy to maintain. According to
Hoffer et al. (1999), SD is detailed information about a system’s design
specification, its internal workings and functionality. In this study SD includes
analysis and design documents. SD should be produced and continuously
updated to evolve together with its software. However, most available SD is
almost always out-dated or even non-exist at all. On the other hand, a thick
set of documentation might be useless too, if such documents do not serve the
information required by software engineers particularly during software
maintenance. As a result, software maintainers still need to study the source
codes to accomplish their tasks.

In order to produce a tool that can serve software maintainers’ needs in
documentation automation, we believe that the current practice of
documentation should be studied. Hence we conducted a survey towards 50
software engineers in Malaysia with the main goal to study their current
practice in production and maintenance of SD during software development
and maintenance based on four types of data elements: characteristic, behavior,
belief and attitude (Kendall and Kendall 1998). We also highlight the
questions that argue on what kind of tools should be introduced, why it is
introduced and when or how it should be introduced. We would like to
emphasise the word “should” instead of “can” because for an instance; what
a tool is claimed “can” do is sometimes not actually what a tool “should” do
to serve the users’ needs. In the following sections we will discuss the
background, survey, analysis, findings and finally our conclusion.

BACKGROUND

Programmers spend 40 percent to 60 percent of their time reading the code
and attempting to comprehend its logic (Pigoski 1997). Without the assistance
of documentation, the percentage may be higher and directly lead to costly
software maintenance process. Furthermore, problems in software maintenance
are related to how much information is available from the documents
especially with respect to the architecture and design of a system. A study
stated that documentation being absent, out-of-date or at best insufficient as
the third major cause of maintenance problems (van Vliet 2000). While a
survey found that the lack of documentation of applications was in the second
ranking of the three biggest problems related to software maintenance
process (Sousa and Moreira 1998). We highlight the problems related to
standard and tools in the following paragraphs.

A lot of CASE (Computer-Aided Software Engineering) tools can support
software engineers’ activities throughout the whole Software Development

06- Shahida Sulaiman 4/26/05, 8:55 AM82

83

Life Cycle (SDLC). Such fully integrated CASE tools will normally produce a
self-generated documentation that will be useful to maintainers. Nonetheless
most organisations do not use CASE tools to support all phases of SDLC.
“These reasons range from a lack of vision for applying CASE to all aspects
of the SDLC to the belief that CASE technology will fail to meet an organisation’s
unique system development needs” (Hoffer et al. 1999). Hence, software
developers might just use a particular CASE tool to draw diagrams that
capture user requirements in the analysis and design phase of SDLC but do not
use code generators or Reverse Engineering (RE) utility provided. Therefore,
there is a lack of integration between the SD and the source codes. In addition,
RE workbenches can re-document legacy systems by parsing source codes of
the subject system and visualise the artifacts in its graph editor. Nevertheless,
RE tools are still not widely used for some fundamental difficulties: documents
generated are too general or too detail, lack of data needed by maintainers,
and RE tools are inflexible (Canfora et al. 1991).

On the other hand, if CASE tools are not used at all, software engineers
may need to read through all the source codes again and transform them into
graphical notation. “This can be a tedious job, which requires considerable
concentration. It is all too easy for concentration to collapse, for even a very
short period and miss some vital piece of information” (Lincoln 1993).
Besides, during initial development, documentation often comes off badly
because of deadlines and other time constraints (van Vliet 2000). Programmers
also dislike documenting system as this is seen as a rather boring task
compared to the excitements of creation in design and implementation
(Macro 1990).

Implementation of a standard such as those from DoD (US Department
of Defense) and IEEE (Institute of Electrical and Electronics Engineering) in
a software development or maintenance process is a good practice because
the standard will provide guidelines on how to conduct the activities in the
phases of software life cycle including the documentation to be produced.
Some of the standards provide the brief outlines on the contents of specified
documentation such as IEEE Std 1016-1998 that recommends practice for
Software Design Descriptions but some standards just describe the
documentation to be produced in general for instance DoD-Std-2167A.
However, most organisations in Malaysia do not apply any formal software
development methodology (Yahya et al. 2002). Indirectly it shows they
probably do not apply any documentation standards to be the guidelines in
producing or maintaining SD. Therefore documents or SD available are of
different formats.

Software needs to be maintained and evolves due to new requirements,
changes in environment or other factors. Software maintainability is extremely
crucial to ensure long lasting software evolution. Documentation is indicated
as one of the important factors in software maintainability (Pigoski 1997).

06- Shahida Sulaiman 4/26/05, 8:55 AM83

84

Nevertheless, only the documentation for the first maintenance could be
reliable. The link between a program and its associated documentation are
sometimes lost during the maintenance process and this may be the
consequence of poor configuration management or due to adopting a “quick
fix” approach to maintenance (Sommerville 1997).

A number of surveys were conducted to study the problems in software
maintenance (Sousa and Moreira 1998; van Vliet 2000) and some surveys
such as by Sim et al. (1998) were conducted to study the features required
by software engineers in tools for software understanding. However, there is
no research has been done to study the role of standards and tools in the
current practice. Thus, our study will cover these issues.

THE SURVEY

The survey managed to derive the responses from 50 software engineers from
various industries and levels in Malaysia who are involved in software
development or maintenance project. Maximum of two software engineers
from the same company were allowed to answer the questionnaire. A pilot
study of the survey was conducted to 5 software engineers and the questionnaire
was refined. The survey was conducted by e-mailing some software engineers
who had liaison with the researchers. The questionnaire file was attached to
the e-mail and then forwarded to other software engineers. In addition, some
identified respondents were personally contacted and distributed with the
printed questionnaire by the researchers. This method made the response rate
higher and saved cost compared to the method of contacting all organisations
in a telephone directory.

The questionnaire was formulated based on the literature review and
discussions with some software engineers. It consisted of 35 questions (only
3 of them were open-ended questions) distributed into 3 sections: Section A:
Professional Background (A1 – A14), Section B: System Documentation and
Standard (B1 – B16), and Section C: CASE tools (C1 – C5). Some of closed
questions provided “Others” as another option of answers in order to allow
respondent to provide the answer that never thought of. Some answers were
provided with “No Opinion” option to avoid the feeling of being forced to
agree with the answers provided. The questionnaire was quite comprehensive,
hence in following analysis and findings we only focus on the issues related
to the role of standards and tools in documentation production and maintenance.

THE ANALYSIS

The following discussion will be based on four categories of element or data:
characteristic, behavior, belief and attitude. The data was analysed using
Statistical Package Software System (SPSS) 9.0 for Windows. The questions

06- Shahida Sulaiman 4/26/05, 8:55 AM84

85

without any response were considered missing except for certain filtered
questions, which required respondents to skip irrelevant questions.

CHARACTERISTIC

For this element, the survey identified properties of software engineers and
SD. The respondents were from diverse job positions i.e. from technical to
management (see element Cr1 in Table 1). The data shows 16 respondents
were programmers or senior programmers (32%) and 14 respondents (28%)
were system analysts. While in management level, the cumulative frequency
was 13 respondents (26%). The distribution between the technical and
management people surveyed was almost 2 to 1. The respondents were from
wide range of industry (element Cr2 in Table 1) with most of them were from
software industry (32%), followed by telecommunication (20%), government
service (16%) and software consultancy (12%). Other category contributed
20% of those surveyed. In term of experience (refer element Cr3 in Table 1),
most respondents had involved in software development or maintenance for
1 to 5 years.

Regarding the usefulness of existing SD provided to software maintainers
(Table 2, element Cr5), 38 respondents (76%) cited that it was always useful.
On the other hand, 7 of them (14%) viewed SD provided was not always
useful and they almost “strongly agreed” with the reasons out-of-date with
the mean 4.67, almost “agreed” with the reason unreliable (4.17) and
incomplete (3.83), “agreed” with the reason misleading (4.00), almost “normal”
opinion towards low quality (3.20) and “normal” opinion towards unorganised
(3.00). When asked whether parts of SD produced by CASE tools were always
useful (see Table 2, element Cr6), 21 respondents (84%) with CASE tools
experience said it was always useful. While only 4 respondents (16%) said
that it was not always useful with the “strongly agree” reason (5.00), lack the
data needed.

BEHAVIOR

Behavior element investigates on “what organisational members do” during
software development or maintenance in relation with documentation. From
the response on the number of projects, on average, the respondents are
involved in 3 maintenance projects and 2 development projects yearly.
Meanwhile, on average, a set of SD was produced or modified for both
maintenance project and development project per year. Thus, 2 maintenance
projects and 1 development project were usually not provided with SD yearly.

From Table 3 (element Bv6, question B5, B6 and B7), less than half of
the respondents (46%) were provided with a standard or company’s own
template to write SD in which only 5 respondents (22.7%) were provided with
documentation standard while the other 16 (72.7%) were only provided with

06- Shahida Sulaiman 4/26/05, 8:55 AM85

86

Element/
Question

Description Response Item F %

Cr1/A1 Job position Programmer/Senior Programmer 16 32.0
System Analyst/Senior System Analyst 14 28.0
Team/Project Leader 7 14.0
Software/Project Manager 4 8.0
Software Consultant 2 4.0
Other 7 14.0

Cr2/A2 Category of Software 16 32.0
industry Telecommunication 10 20.0

Software Consultancy 6 12.0
Government Service 8 16.0
Other 10 20.0

Cr3/A3 Experience Less than 1 year 11 22.0
(regardless of 1 to 5 years 28 56.0
companies) More than 5 years 11 22.0

Note: F = Frequency, % = Percentage

TABLE 1. Characteristics of software engineers

Element/
Question

Description Response Item F %

Cr5/B3 Is SD provided for existing No 7 14.0
maintenance always useful? Yes 38 76.0

Not Relevant 5 10.0
Cr6/C2 Are parts of SD produced by No 4 16.0

CASE tools always useful? Yes 21 84.0

Element/
Question

Description Response Item Mean*

Cr5/B4 Why SD provided for existing Unreliable 4.17
maintenance NOT always useful? Incomplete 3.83

Out-of-date 4.67
Misleading 4.00
Unorganised 3.00
Low quality 3.20

Cr6/C3 Why parts of SD produced by Lack the data needed 5.00
CASE tools NOT always useful?

Note: F = Frequency, % = Percentage.
*Mean is based on the Likert scale:
1 = Strongly Disagree 2 = Disagree 3 = Normal 4 = Agree 5 = Strongly Agree

TABLE 2. Usefulness of SD provided and SD produced by CASE tools

06- Shahida Sulaiman 4/26/05, 8:55 AM86

87

company’s own template. Most of them (17 respondents, 73.9%) claimed that
they “always” followed the standard or template provided, 5 respondents
(21.7%) cited “sometimes” and 1 respondent (4.3%) cited “never”. Regarding
the use of CASE tools (element Bv12), 24 respondents (49%) did not use CASE

tools, while 20 respondents (40.8%) used CASE tools partially and only 5
respondents (10.2%) used CASE tools for the whole SDLC. Referring to
experience in using RE tools (element Bv13), only 3 respondents (6.5%) had
ever used the tools compared to 43 respondents (93.5%) without such
experience at all.

Regarding the software packages used to produce or maintain SD, the
responses are ranked by the mean values and the usages are compared, as in
Table 4. Based on the table, it reveals that the respondents who used CASE

tools for the whole SDLC used most of the software packages; both word
processor and spreadsheet (3.00) and graphical tools (2.33), compared to the
other two groups. For the other two groups (“None” and “No, only part of
SDLC”), both mostly used word processors (2.81 and 2.79 respectively). The
former group used spreadsheet application more (2.08) than the latter group
(1.50), but used less graphical tool (1.62) compared with the latter group
(2.09).

Table 5 reveals that respondents without documentation standard or
template, produced or maintained less number of SD (0.88 for development
and 0.80 for maintenance projects) and they faced more maintenance projects
without SD yearly (1.96). Meanwhile, the respondents who were provided

Element/
Question

Description Response Item F %

Bv6/B5 SE provided with standard No 27 54.0
or template to write SD Yes 23 46.0

Bv6/B6 Standard or template Documentation standard 5 22.7
provided Company’s own template 16 72.7

Other 1 4.5
Bv6/B7 How frequent the standard Always 17 73.9

or template provided is Sometimes 5 21.7
followed Never 1 4.3

Bv12/C1 Use CASE tools for the None 24 49.0
whole SDLC Yes 5 10.2

No, only parts of SDLC 20 40.8
Bv13/C4 Use single reverse No 43 93.5

engineering tool Yes 3 6.5

Note: F = Frequency, % = Percentage

TABLE 3. The use of SD standard or template, CASE or RE tools

06- Shahida Sulaiman 4/26/05, 8:55 AM87

88

C
A

SE
 T

oo
ls

 U
sa

ge
W

or
d

Sp
re

ad
 S

he
et

G
ra

ph
ic

al
O

th
er

Fo
r

W
ho

le
 S

D
L

C
Pr

oc
es

so
r

A
pp

lic
at

io
n

T
oo

l
T

oo
l

N
on

e
M

ea
n

2.
81

2.
08

1.
62

2.
00

N
21

12
13

1
St

d.
 D

ev
ia

tio
n

.5
1

.6
7

.7
7

-
Y

es
M

ea
n

3.
00

3.
00

2.
33

3.
00

N
4

1
3

1
St

d.
 D

ev
ia

tio
n

.0
0

-
.5

8
-

N
o,

 o
nl

y
pa

rt
 o

f
SD

L
C

M
ea

n
2.

79
1.

50
2.

09
2.

67
N

19
10

11
3

St
d.

 D
ev

ia
tio

n
.4

2
.7

1
.7

0
.5

8
T

ot
al

M
ea

n
2.

82
1.

87
1.

89
2.

60
N

44
23

27
5

St
d.

 D
ev

ia
tio

n
45

.7
6

.7
5

.5
5

T
A

B
L

E
 4

.
T

he
 u

se
 o

f
C

A
SE

 t
oo

ls
 v

er
su

s
th

e
us

e
of

 s
of

tw
ar

e
pa

ck
ag

e

06- Shahida Sulaiman 4/26/05, 8:55 AM88

89

Pr
ov

id
ed

 w
ith

 S
ta

nd
ar

d
or

N
um

be
r

of
 S

D
 P

ro
du

ce
d

N
um

be
r

of
 S

D
 P

ro
du

ce
d

N
um

be
r

of
 S

/W
T

em
pl

at
e

to
 W

ri
te

 S
D

fo
r

N
ew

 S
/W

/M
od

if
ie

d
fo

r
S/

W
M

ai
nt

en
an

ce
 P

ro
je

ct
 N

ot
D

ev
el

op
m

en
t

Pr
oj

ec
t

M
ai

nt
en

an
ce

 P
ro

je
ct

Pr
ov

id
ed

 w
ith

 S
D

N
on

e
M

ea
n

.8
8

.8
0

1.
96

N
25

25
24

St
d.

 D
ev

ia
tio

n
.9

7
1.

22
5.

51
D

oc
um

en
ta

tio
n

St
an

da
rd

M
ea

n
1.

40
1.

00
1.

60
N

5
5

5
St

d.
 D

ev
ia

tio
n

1.
14

.7
1

1.
52

C
om

pa
ny

’s
 o

w
n

te
m

pl
at

e
M

ea
n

2.
38

2.
38

1.
08

N
13

13
12

St
d.

 D
ev

ia
tio

n
3.

73
2.

87
1.

51
O

th
er

M
ea

n
.0

0
1.

00
1.

00
N

1
1

1
St

d.
 D

ev
ia

tio
n

-
-

-
T

ot
al

M
ea

n
1.

36
1.

30
1.

64
N

44
44

42
St

d.
 D

ev
ia

tio
n

2.
24

1.
92

4.
25

T
A

B
L

E
 5

.
T

he
 u

se
 o

f
st

an
da

rd
 o

r
te

m
pl

at
e

ve
rs

us
 t

he
 n

um
be

r
of

 S
D

 a
nd

 m
ai

nt
en

an
ce

 p
ro

je
ct

 w
ith

ou
t

SD

06- Shahida Sulaiman 4/26/05, 8:55 AM89

90

with documentation standard produced and modified more SD (1.40 for
development and 1.00 for maintenance projects) and faced less maintenance
projects without SD (1.60) as compared to the former group. In addition,
those with companies’ own template, produced and maintained the most
number of SD yearly (2.38 for both development and maintenance projects)
and the least number of maintenance projects not provided with SD (1.08).
We do not discuss on the “other” group.

The number of SD produced for new software development (see Table 6)
is the highest (1.71) among software engineers who did not use CASE tools
at all followed by those partially used CASE tools (1.16) and fully used CASE

tools (1.00). On the other hand, the highest number of SD produced or
modified in software maintenance project contributed by software engineers
who partially used CASE tools (1.63) followed by those with no CASE tools
(1.29) and with CASE tools (0.50). Regarding the number of maintenance
project was not provided with SD, this phenomenon mostly occurred among
software engineers partially used CASE tools (2.61), while those fully used
CASE tools had the mean value 1.50 compared to only 0.95 of those without
CASE tools.

Number of SD Number of SD Number of s/w
Use of CASE Tools produced for new produced/modified maintenance
For Whole SDLC s/w development for s/w project not

 project maintenance project provided with SD

None Mean 1.71 1.29 .95
N 21 21 20
Std. Deviation .2.97 2.00 1.28

Yes Mean 1.00 .50 1.50
N 4 4 4
Std. Deviation 1.41 .58 2.38

No, only Mean 1.16 1.63 2.61
part of N 19 19 18
SDLC Std. Deviation 1.34 2.03 6.25

Total Mean 1.41 1.36 1.71
N 44 44 42
Std. Deviation 2.25 1.93 4.24

TABLE 6. The use of CASE tools versus number of SD and
maintenance project without SD

ATTITUDE

The element of attitude covers the issue of “what people in the organisation
say they want in a document generator or RE tools”. This section will

06- Shahida Sulaiman 4/26/05, 8:55 AM90

91

investigate whether it is true that software engineers prefer graphical to
textual software representation in order to understand the software, and what
features are in favour that should be incorporated into a document generator
tool.

The analysis result is shown in Figure 1. The figure illustrates the
difference in the need of textual description versus graphical representation,
in which the mean of graphical representation of system is higher compared
to that of textual description. The mean of textual description of system
architecture or system and subsystem is 3.18 while 3.83 for the graphical
representation. The mean of textual description of modules or programs and
their relationships is 3.20 but 3.83 for the graphical representation. Meanwhile,
the mean of textual description of data flow is also lower (3.15) if compared
to that of data flow graph (3.72). The mean for textual description of
procedures or methods or functions is 3.27 whilst the mean for program
versus file cross-reference table is 3.14. The most needed features among all
are graphical system-subsystem flow and graphical representation of
components’ relationships, which share the same mean value (3.83).

For other features like search utility, documentation layout generation,
application in wide range of language, interactive browsers, and link between
source code and graphical representation; their means are 3.20, 2.93, 2.98,
2.93 and 3.29 respectively. All the features have the means within the range
of 2.00 (Less Required) to 4.00 (Required) which indicate that all features are
basically necessary to have but not the most demanded in the respondents’
point of view.

T-test was used to study the significance of difference in means. The null
hypothesis is “there is no significant difference between the means of textual
and graphical software visualisation”. Table 7 reveals that all the three pairs
are able to reject the null hypothesis (less than 0.025).

BELIEF

The belief element ponders the issues related to what software engineers
think about the importance of SD, its standard or template, reasons to have
documentation standard or template, and reasons for not producing SD.
Element Bf1 (see Table 8) reveals that the majority of respondents (33
respondents, 68.8%) strongly agreed that SD was important, while 14
respondents (29.2%) agreed, and only one respondent (2.1%) was normal on
the issue. Regarding the importance of documentation standard or template,
element Bf3, majority of them stated “Yes” (98%) and strongly agreed with
the reasons to provide guidelines (4.64), communicate critical information
(4.56), communicate necessary information (4.53), standardise format of
documents (4.53) and organise documents (4.46). Surprisingly, there was a
respondent who was against the belief and stated “No”.

06- Shahida Sulaiman 4/26/05, 8:55 AM91

92

Fe
at

ur
es

 /
 N

ee
d

1
2

3
4

5

T
ex

tu
al

 d
es

cr
ip

tio
n

of
 s

ys
te

m
 a

rc
hi

te
ct

ur
e/

sy
st

em
 a

nd
 s

ub
sy

st
em

3.
18

•

G
ra

ph
ic

al
 r

ep
re

se
nt

at
io

n
of

 s
ys

te
m

 a
nd

 i
ts

 s
ub

sy
st

em

•

3.
83

T
ex

tu
al

 d
es

cr
ip

tio
n

of
 m

od
ul

es
/p

ro
gr

am
s

&
 r

el
at

io
ns

hi
ps

3.

20
•

G
ra

ph
ic

al
 r

ep
re

se
nt

at
io

n
of

 c
om

po
ne

nt
s’

 r
el

at
io

ns
hi

p
i.e

.
ca

ll
gr

ap
h

•
3.

83

T
ex

tu
al

 d
es

cr
ip

tio
n

of
 d

at
a

fl
ow

 b
et

w
ee

n
m

od
ul

es
3.

15
•

G
ra

ph
ic

al
 r

ep
re

se
nt

at
io

n
of

 d
at

a
fl

ow
 b

et
w

ee
n

m
od

ul
es

 i
.e

.
da

ta
 f

lo
w

 g
ra

ph

•
3.

72

T
ex

tu
al

 d
es

cr
ip

tio
n

of
 a

ll
co

m
po

ne
nt

s

3.

27
•

Pr
og

ra
m

 v
er

su
s

fi
le

 c
ro

ss
 r

ef
er

en
ce

 t
ab

le
/f

ile
 u

sa
ge

 t
ab

le

 3

.1
4•

O
th

er
 F

ea
tu

re
s

1
2

3
4

5

Se
ar

ch
 u

til
ity

 t
o

id
en

tif
y

af
fe

ct
ed

 c
om

po
ne

nt
s

in
 m

ai
nt

en
an

ce
 t

as
k

•
2.

93
G

en
er

at
e

do
cu

m
en

ta
tio

n
la

yo
ut

 c
on

fo
rm

 t
o

co
m

pa
ny

’s
 s

ta
nd

ar
d

•
3.

20
C

an
 b

e
ap

pl
ie

d
in

 w
id

e
ra

ng
e

of
 l

an
gu

ag
e

an
d

pl
at

fo
rm

s
 •

2.
98

R
ea

d
te

xt
ua

l
/

gr
ap

hi
ca

l
re

pr
es

en
ta

tio
n

us
in

g
in

te
ra

ct
iv

e
br

ow
se

rs
 •

2.
93

L
in

k
be

tw
ee

n
so

ur
ce

 c
od

e
an

d
its

 g
ra

ph
ic

al
 r

ep
re

se
nt

at
io

n

 •

3.
29

N
ot

e:
 1

 =
 N

ot
 R

eq
ui

re
d,

 2
 =

 L
es

s
R

eq
ui

re
d,

 3
 =

 N
or

m
al

,
4

=
 R

eq
ui

re
d,

 5
 =

 M
os

t
R

eq
ui

re
d

G
ra

ph
ic

al
 f

ea
tu

re
:

––
––

––
–

T
ex

tu
al

 f
ea

tu
re

:
––

––
––

–

FI
G

U
R

E
 1

. T
he

 n
ee

d
of

 g
ra

ph
ic

al
 v

er
su

s
te

xt
ua

l f
ea

tu
re

s
an

d
ot

he
r

fe
at

ur
es

06- Shahida Sulaiman 4/26/05, 8:55 AM92

93

Pa
ir

ed
 D

if
fe

re
nc

e

M
ea

n
St

d.
St

d.

 9
5%

 C
on

fi
de

nc
e

t
dt

Si
g.

D
ev

ia
tio

n
E

rr
or

In
te

rv
al

 o
f

th
e

(2
-t

ai
le

d)
M

ea
n

 D
if

fe
re

nc
e

L
ow

er
U

pp
er

Pa
ir

 1
T

ex
tu

al
 D

es
cr

ip
tio

n
of

 S
ys

te
m

-.
62

1.
54

.2
3

-1
.0

9
-.

16
-2

.7
1

44
.0

10
A

rc
hi

te
ct

ur
e

/
Sy

st
em

-s
ub

sy
st

em
 –

G
ra

ph
ic

al
 s

ys
te

m
-s

ub
sy

st
em

 f
lo

w
Pa

ir
 2

T
ex

tu
al

 D
es

cr
ip

tio
n

of
 M

od
ul

es
/

-.
63

1.
29

.1
9

-1
.0

1
-.

25
-3

.3
2

45
.0

02
Pr

og
ra

m
s

an
d

th
ei

r
re

la
tio

ns
hi

p
–

C
al

l
gr

ap
h

Pa
ir

 3
T

ex
tu

al
 D

es
cr

ip
tio

n
of

 S
ys

te
m

 D
at

a/
-.

57
1.

05
.1

5
-.

88
-.

25
-3

.6
6

45
.0

01
D

at
a

Fl
ow

 –
 D

at
a

fl
ow

 g
ra

ph

T
A

B
L

E
 7

.
T

-t
es

t
of

 t
ex

tu
al

 v
er

su
s

gr
ap

hi
ca

l
fe

at
ur

es

06- Shahida Sulaiman 4/26/05, 8:55 AM93

94

Figure 2 illustrates the reasons for not producing SD. The top three
reasons were time constraints (4.30), commercial pressures (3.80) and SD not
requested by project leader or software manager (3.60). The other reasons
were because SD was not requested by customer and it was a tedious task,
which share the same mean value (3.40), costly to keep updated (3.30), a
boring task (3.20), done by other people and not interested, both with the same
mean (3.00). These mean values were based on Likert scale: 1 = Strongly
Disagree, 2 = Disagree, 3 = Normal, 4 = Agree and 5 = Strongly Agree.

We compare the means based on the Likert scale, of the top five reasons
(see Figure 2) for not producing SD with the respondents’ belief towards the
importance of SD as in Table 9. We do not discuss on the “Normal” group,
but only on the “Agree” and “Strongly Agree” groups. The mean for “time
constraints” reason is the highest for both groups compared to other reasons
in each group. But, comparing between the two groups themselves, the mean
of “Strongly Agree” group is 0.43 higher than that of “Agree” group. The
second highest reasons for “Agree” group are “not requested by project
leader or software manager” and “not requested by customer” (sharing the
mean 4.00 of scale “Agree”). On the other hand, the “Strongly Agree” group
cited the second top reason as commercial pressures (3.86), followed by three
other reasons: “tedious task” (3.47), “not requested by project leader or

Element/
Question

Description Response Item F %

Bf1/B1 Importance of SD Normal 1 2.1
Agree 14 29.2
Strongly Agree 33 68.8

Bf3/B8 Importance of documentation No 1 2.0
standard or template Yes 48 98.0

Element/
Question

Description Response Item Mean

Bf4/B9 Reasons there should be Communicate necessary 4.53
documentation standard information
or template (If “Yes” in Communicate critical 4.56
Question B8) information Provide guidelines 4.64

Organise documents 4.46
Standardise format of 4.53
 documents

Note: F = Frequency, % = Percentage.
Element Bf4 based on the Likert scale:
1 = Strongly Disagree 2 = Disagree 3 = Normal 4 = Agree 5 = Strongly Agree

TABLE 8. Importance of SD, standard and template

06- Shahida Sulaiman 4/26/05, 8:55 AM94

95

software manager” (3.13) and “not requested by customer” (2.87). While for
those “agreed” on the importance of SD, the last two reasons were “commercial
pressures” (3.75) and “tedious task” (3.42).

FIGURE 2. Bar chart of the mean values versus reasons for not
producing or maintaining SD

THE FINDINGS

Software engineers confront with more maintenance projects without SD

compared to development projects with the ratio of 2:1. Despite their
perspectives on the importance of SD and standards to be followed (see Table
8), both software development and maintenance projects suffer from non-
existence of SD. On the other hand, software engineers tend to appreciate
existence of any kinds of SD. This is because majority of them cited that SD

provided for existing software maintenance or parts of SD produced by CASE

tools were always considered useful to them regardless of their quality (see
Table 2).

Reasons for not producing or maintaining SD range from management to
technical issues. As stated by van Vliet (2000), the foremost reason for not
producing or maintaining SD is due to time constraints. This was inline with
our findings (Figure 2). We discuss only on the top five reasons and the mean
comparison according to the belief towards the importance of documentation.

06- Shahida Sulaiman 4/26/05, 8:55 AM95

96

Im
po

rt
an

ce
 o

f
SD

T
im

e
C

om
m

er
ci

al
N

ot
 R

eq
ue

st
ed

 B
y

N
ot

 R
eq

ue
st

ed
T

ed
io

us
C

on
st

ra
in

ts
Pr

es
su

re
s

Pr

oj
ec

t
L

ea
de

r
or

 S
/W

 M
an

ag
er

B
y

C
us

to
m

er
T

as
k

N
or

m
al

M
ea

n
5.

00
3.

00
3.

00
4.

00
3.

00
N

1
1

1
1

1
St

d.
 D

ev
ia

tio
n

-
-

-
-

-
A

gr
ee

M
ea

n
4.

07
3.

75
4.

00
4.

00
3.

42
N

14
12

13
13

12
St

d.
 D

ev
ia

tio
n

1.
14

1.
36

1.
08

.8
2

1.
31

St
ro

ng
ly

 A
gr

ee
M

ea
n

4.
50

3.
86

3.
13

2.
87

3.
47

N
20

14
15

15
15

St
d.

 D
ev

ia
tio

n
.6

1
.8

6
1.

41
1.

19
1.

30
T

ot
al

M
ea

n
4.

34
3.

78
3.

52
3.

41
3.

43
N

35
27

29
29

28
St

d.
 D

ev
ia

tio
n

.8
7

1.
09

1.
30

1.
15

1.
26

T
A

B
L

E
 9

.
Im

po
rt

an
ce

 o
f

SD
 v

er
su

s
re

as
on

s
fo

r
no

t
pr

od
uc

in
g

SD

06- Shahida Sulaiman 4/26/05, 8:55 AM96

97

Software is always developed or maintained within a specified schedule and
must be installed at customers’ site as planned. This provides time constraints
and causes commercial pressures to software engineers. They tend to emphasise
more on producing the software and forget about the documentation. The
third and fourth ranked reasons were: not requested by their superiors and
customers respectively. Most customers are not aware of the need to have
documents as a complementary product to a software system. Since customers
do not request documentation, project leaders or software managers do the
same to their software engineers although they believe in the importance of
SD to be produced or maintained together with the software system. Sharing
the fourth ranked reason previously mentioned was the reason why software
engineers did not produce or maintain SD as it was a tedious task.

Technically, documenting activities are tedious particularly when we
need to ensure the link between source codes and documents is always
updated. In addition, software engineers with stronger belief towards the
importance of SD, tend to have more concrete reasons (“commercial pressures”
and “tedious tasks”) besides the foremost reason “time constraints” (Table 9).
For this group of software engineers, they were almost “normal” towards the
reasons “not requested by project leader or software manager” and “not
requested by customer”. Thus, it reveals that these software engineers have
better perspectives towards documentation, and do not simply neglect
production of documentation or give a weak reason such as “Although I
know I should do, I don’t do because I’m not requested to do”.

Single or integrated CASE tools that cover the whole SDLC (like Oracle
Designer and Developer, Rational Rose integrated with Visual Basic) should
be able to lighten software engineers’ work hence eliminate the problems
related to SD. Most development tool suite or package’s latest version like
Visual Basic and Borland JBuilder provide the utility to document components
of a software system in the development environment itself. As a result, the
use of CASE tools (fully or partially) can make software engineers assume the
data they feed into a CASE tool during software development can be referred
as an alternative to documentation especially if they employ rapid application
development or extreme programming in their software development or
maintenance. This is supported by the fact that most of them (21 of 25
software engineers with full or partial CASE tools experience) found the parts
of documents provided by CASE tools were useful (Table 2).

On the other hand, software engineers without CASE tools tended to put
best effort to produce documents in development projects (Table 6). The
same scenario occurred when producing SD for software maintenance in
which software engineers who used CASE tools for the whole SDLC produced
or maintained less SD as compared to the other two categories. Consequently,
software engineers who used CASE tools (fully or partially) faced a higher
number of software development or maintenance projects without SD compared

06- Shahida Sulaiman 4/26/05, 8:55 AM97

98

with those without CASE tools. In this case, the use of CASE tools does not
seem to be able to solve problems in SD as always expected. Besides the use
of CASE tools, software engineers used software packages like word processor,
spreadsheet application and graphical tool to produce or maintain documents
(Table 4). We expected those without CASE tools or partially used CASE tools,
used software packages the most. But our study shows that the two groups
used less software packages if compared to the group with CASE tools for the
whole SDLC. Based on previous discussion on the use of CASE tools, software
engineers without CASE tools or partially use it tend to produce less SD, hence
they also use less software packages to document software system.

Software engineers believed in the importance of SD particularly to
provide guidelines and also the enforcement of standard or template while
writing SD (Table 8). Despite the belief, more than half of software engineers
were not provided with standard or template by their companies (Table 3).
Only 5 software engineers were provided with documentation standard while
16 software engineers were provided with company’s own documentation
template. When enforced to follow the standard or template in writing SD,
most software engineers tended to “always” follow them and only some
software engineers “sometimes” followed them (Table 3). In addition, software
engineers with documentation standard or template tended to produce or
maintain more SD compared to those without it (Table 5). Consequently, the
former group of software engineers faced less maintenance project without
SD compared to the latter.

Some CASE tools like Rational Rose provide the utility to reverse
engineer existing source codes into the design level. However, this tool will
work well if software engineers start with the analysis and design using the
tool and the coding is done using the integrated development tool. Otherwise,
the tool will visualise the class diagrams only without detail information on
the relationships of the components such as the function calls. Rational Rose
also provides a documentation environment called SODA but this utility is not
linked with RE utility. Hence documentation still must be done manually
(with some automation of components’ description) to capture the diagrams
done during analysis and design. Despite the existence of single RE tools or
workbenches, they are still not widely used in Malaysia. In fact the difference
between RE tools and CASE tools with RE facility is still unclear. For instance
there were two respondents specified Visual Modeler (wrongly thought as
single RE tool, in fact it is just like Rational Rose but specially dedicated for
Visual Basic) and Rational Rose respectively, as a single RE tool experienced.
Only three out of 46 respondents claimed to ever use a single RE tool. One
of them specified CASE Tool 2 (never identified in our literature review)
while another two software engineers did not specify the tools’ names. Hence
the three respondents’ experience towards RE tool is still a question.

06- Shahida Sulaiman 4/26/05, 8:55 AM98

99

RE or document generator tools should have the features required by
software engineers otherwise the data served by the tools might not be useful.
The study discovered that graphical representation was preferred more than
textual representation, and the difference in the three types of features
identified in the study (system-subsystem architecture, data flow graph and
call graph – see Figure 1) was significant (Table 7) for each feature compared
to its textual counterpart.

WHAT, WHY, WHEN AND HOW TOOLS “SHOULD” SUPPORT THE PRACTICE

From the findings we summarise what, why, when and how tools “should”
support (not “can” support) the practice in production and maintenance of SD.

a) What tools should support?
Both documentation and enforcing a standard while writing it are
important. Thus, a tool that can visualise the software artifacts particularly
with features specified by software engineers in this study, and some
features highlighted in our previous work (Sulaiman et al. 2002) into a
standardised documentation template should be introduced. The tool
should focus on production of documents related to the analysis and
design of a system, which are crucial to software maintainers.

b) Why tools should support?
From the reasons for not producing or maintaining SD, in our study, it
shows that tools should support documentation because software engineers
frequently face time constraints and commercial pressures in their projects.
The tools should also attempt to make documenting activities interesting,
easy and fun in order to eliminate problems related to negative perspectives
towards documenting activity.

c) When tools should support?
From the findings in this study, at least one set of SD was not produced
during development stage yearly. Hence, it shows that tools to automate
documenting activities should be introduced since software development,
and should be continuously utilised in the following maintenance
processes. Regardless of what tools software engineers use to perform
analysis, design and coding, the tools should be an alternative to produce
the most updated SD. In an SDLC of a software development or maintenance
process, the tools should be used after each implementation phase when
there is no more changes to be made, in other word, when the version
or revision of the software has been released.

06- Shahida Sulaiman 4/26/05, 8:55 AM99

100

d) How tools should support?
If document generator tool is introduced early in the development stage,
the tool will be able to capture the knowledge from software developers
regarding the clustering of the components in the software. Subsequently,
the written source codes can be parsed during reverse engineering
process, and the captured software artifacts can be visualised or viewed
and also printed into a standardised document template, configured and
archived into softcopy for future use. If the tool is used only when
software is on a maintenance stage, software engineers need to study the
existing software components to suggest how to cluster them before
other steps can be taken. This may eliminate the weaknesses in the
current tools studied by Sulaiman and Idris (2002).

Therefore there is a difference between “can” and “should” as discussed
earlier. A tool that is claimed “can” perform certain task might not satisfy
users’ needs if they do not accomplish the tasks they “should” perform.
Based on the above arguments, we illustrate how CASE tools or workbenches,
and also documentation standards can play their roles within a software life
cycle as illustrated in Figure 3.

FIGURE 3. The implementation of a standardised documentation environment
within a software life cycle

06- Shahida Sulaiman 4/26/05, 8:55 AM100

101

The dotted lines show the phases when the documentation environment
should intercept. At these levels, source codes are in the most reliable and
updated condition where there is no more changes and software is released.
In the documentation environment, the shaded rectangle represents a document
generator which is developed using an enhanced approach of software
visualisation (as discussed in a previous work by Sulaiman and Idris 2002).
Prior to generating a document, a user is required to feed in the name of
programs and clustering information of the programs specified. The existing
parser will parse the source codes and then the software artifacts will be
retained in a software repository. The document generator will extract related
information from the repository including the clustering details that are
tagged with the parsed software components and generate the documents to
be viewed and printed based on the document template or queries specified
by the user.

CONCLUSION

The study implies that both standards and tools play very significant roles in
order to improve the current practice in production and maintenance of
documentation particularly system documentation. Despite software engineers’
belief on the importance of SD, they still do not produce SD during software
development or maintain SD during software maintenance for the top two
reasons: time constraints and commercial pressures. Besides, the use of
software packages, CASE tools or workbenches like RE, does not provide total
solution to the problems related to SD. However the use of both standards and
tools in an organisation tends to increase the number of SD produced or
maintained. Although an organisation does not employ any documentation
standard, software managers should at least provide a documentation template
and then they can slowly enforce a suitable standard in their documentation-
related activities.

On the contrary, a tool may be useless if it cannot satisfy users’ needs.
Thus we emphasise on what, why, when and how tools should support the
practice based on our study, to provide a guidance to CASE tools developers.
In a nutshell, we believe the documentation practice can be improved by
using a document generator tool integrated with a RE technology in a
standardised documentation environment to assist software engineers in
documenting critical information during development and the following
maintenance processes, that is after an implementation phase in which source
codes are at the most updated level. Nevertheless, the functionalities of such
tools are still not widely understood and utilised by software engineers in
Malaysia. Hence we should increase the awareness of the need for the
effective tools to improve their current practice in production and maintenance
of documentation in general, and SD in particular.

06- Shahida Sulaiman 4/26/05, 8:55 AM101

102

REFERENCES

Canfora, G., Cimitile, A. and Carlini, U. 1991. A logic-based approach to reverse
engineering tools production. IEEE Transactions on Software Engineering 8(12):
1053-1064.

Hoffer, J. A., George, J. F. and Valacich, J. S. 1999. Modern systems analysis and
design. 2nd Ed. Reading, USA: Addison Wesley.

Kendall, K. E. and Kendall, J. E. 1998. System analysis and design. 4th Ed. London:
Prentice Hall.

Lincoln, A. D. 1993. Computer-aided documentation for software maintenance. IEE
Colloquium on Issues in Computer Support for Documentation and Manuals
169(7): 1-3.

Macro, A. 1990. Software engineering concepts and management. Hertfordshire, UK:
Prentice Hall.

Pigoski, T. M. 1997. Practical software maintenance: best practices for managing
your software investment. Indianapolis, USA: John Wiley.

Sim, S. E., Clarke, C. L. A. and Holt, R. C. 1998. Archetypal source code searches:
a survey of software developers and maintainers. Proceedings of the Sixth
International Workshop on Program Comprehension, 24-26 June. Ischia, Italy,
180-187.

Sommerville, I. 1997. Software engineering. England: Addison Wesley.
Sousa, M. J. C. and Moreira, H. M. 1998. A survey on the software maintenance

process. Proceedings of the International Conference on Software Maintenance,
16-20 November. Washington, USA, 265-274.

Sulaiman, S. and Idris, N. B. 2002. An enhanced approach of software visualization
in reverse engineering environment. Proceedings of the National Conference on
Computer Graphic and Multimedia (CoGRAMM‘02), 7-9 October. Melaka,
Malaysia, 459-464.

Sulaiman, S., Idris, N. B. and Sahibuddin, S. 2002. A comparative study of reverse
engineering tools for software maintenance. Proceedings of the 2nd World
Engineering Congress, 23-25 July. Sarawak, Malaysia, 478-483.

van Vliet, H. 2000. Software engineering principles and practice. 2nd Ed. New York,
USA: John Wiley.

Yahya, Y., Mohd. Yusof, M., Yusof, M. and Omar, N. 2002. The use of information
system development methodology in Malaysia. International Journal of
Information Technology 2: 15-34.

Shahida Sulaiman
Pusat Pengajian Sains Komputer
Universiti Sains Malaysia
11800 USM Pulau Pinang
Malaysia
e-mail: shahida@cs.usm.my

06- Shahida Sulaiman 4/26/05, 8:55 AM102

103

Norbik Bashah Idris, Shamsul Sahibuddin
Centre for Advanced Software Engineering (CASE)
Universiti Teknologi Malaysia City Campus
Jalan Semarak
54100 Kuala Lumpur
Malaysia
e-mail:norbik@case.utm.my, shamsul@case.utm.my

06- Shahida Sulaiman 4/26/05, 8:55 AM103

