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Asymmetry Identification Using Generalised
Symmetry Axes

LEILA FAVAEDI & MARIA PETROU

ABSTRACT

We present an algorithm for identifying asymmetry in CT images of the human body, relying on the local
reflective axis of symmetry. As asymmetry in such images may be a sign of abnormality, our method compares
the two sides of the image divided by the extracted axis of symmetry in order to identify regions of interest.
Both, extraction of local axis of symmetry and identification of deformities, are obtained automatically.
The algorithm is based on registration and extraction of bone contours to generate the desired symmetry
axis. Also, to facilitate comparison of the left side with the reflected right side of the image, the local axis of
symmetry is made straight by alignment of the image pixels.
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ABSTRAK

Pengarang membentangkan satu algoritma untuk mengenal pasti imej simetri tubuh manusia dalam imbasan
imej CT, dengan berpandukan paksi simetri reflektif setempat. Imej simetri lazimnya, membawa tanda
bahawa wujudnya ketidaknormalan, kaedah ini membandingkan dua imej sisi yang dibahagikan kepada
paksi ekstrek dengan tujuan untuk mengenal pasti kawasan tidak normal. Kedua-duanya iaitu, pembahagian
paksi ekstrek dan pengenalan diformasi, diperoleh secara automatik. Algoritma yang digunakan adalah
berasaskan pendaftaran dan ekstraksi kontur tulang untuk menghasilkan paksi simetri yang dikehendaki.
Juga, untuk membandingkan imej sebelah kiri yang dipantulkan ke sebelah kanan, paksi reflektif setempat
dibuat lurus melalui pelarasan piksel imej.

Kata kunci: Simetri, Paksi Reflekstif Setempat, Imej CT.

INTRODUCTION

Symmetry detection and analysis has been used in various applications in computer vision, ranging from
facial image analysis (Mitra & Liu 2004) and vehicle detection (Zeilke et al. 1993), to medical image analysis
(Tuzikov et al. 2003; Mancas et al. 2005) and texture discrimination (Bonneh et al. 1993; Chetverikov
1995). In various neurological and plastic surgery applications, the symmetry between two halves of the
imaged organ has to be assessed and quantified. There are several researchers who have worked on detecting
reflective symmetry in medical images. Alterson and Plewes (Alterson & Plewes 2003) presented a symmetry
detection algorithm for breast cancer determination based on feature extraction techniques. Junck et al. (1990)
developed a method for automatic detection of line symmetry in brain images based on correlation analysis.
Several more algorithms have been proposed to detect the symmetry plane in brain images that may be used
for tumor extraction (e.g. (Joshi 2003; Prima 2002; Tuzikov 2003)). Most of the papers concentrate on brain



symmetry. In this paper we are interested in bone symmetries for plastic surgery applications. Bones are best
depicted in X-ray-based imaging.

Computer Tomography (CT) images are X-ray based and they are not only used for diagnostic purposes,
but also for treatment and surgical planning, and for determining the prognosis for various conditions. In
CT images, one may distinguish between different types of tissue, such as bone, muscle and fat. Facial
and skull CT scanning is often used when fast surgical diagnosis and planning are vital. The vast majority
of facial and head trauma patients with isolated or severe injuries are injured as a result of road traffic
accidents, falling, or beating. Internal bleeding, injuries and deformities in these kinds of patients destroy
the symmetry, for example, of the frontal view of the face. Although there are many works on finding the
reflective symmetry axis in the fields of mathematics, computer vision and image processing, the main
problem in many natural objects is that the axis of symmetry is not usually just a straight line, but rather
a generalised curve. In this paper, we develop methodology for identifying the breaking of symmetry in
CT images of parts of the human body, that are expected to be symmetric, and quantifying the degree of
asymmetry, as a diagnostic support tool for surgeons. To quantify asymmetry, first, the symmetry axis
between the two halves of the depicted part has to be defined. This may not be a straight line. We refer
to such an axis of symmetry as “generalised axis of symmetry”. Once the generalised symmetry axis is
defined, the differences between the two halves of the depicted part are quantified. Both these stages are
fully automated.

To identify the generalised symmetry axis, we start from a gross, straight line estimate and refine it by
using sub-part matching. As the applications we are interested in involve structures that may be identified
by contours, we use as sub parts the contours identified by the level sets method. Although the majority of
our experimental data concern images of the human head, our methodology may be applied to any imaged
part of the human body where symmetry is expected. This paper is structured as follows. In section 2 we
present our methodology. In section 3 we present some experimental results and we conclude in section 4.

METHODOLOGY

The methodology we propose is fully automatic and consists of several stages.

A. Level sets method for contour defection

First, an active contour method [6], which uses a functional similar to the Mumford-Shah functional for
segmentation 7] is applied to an input image / of size MxN to segment the bone contours. Let us assume
that C,(p) = (x(p), ¥(p)), parametrized by p (0 =p < 1) is an initial closed contour defined on the image
coordinates (x, y). By evolving the contour in the direction of its Euclidean normal vector, using a scalar
speed function, a family of curves C(p, n) = (x(p, n), y(p, n)) is generated, parametrised by time parameter
n. To obtain the bone contours, an energy functional E is defined as
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where I(x, y) is the image intensity, j, A1 and A2 are positive constants, and C1 and C2 are constant matrices
where all their entries are the mean intensities of image / inside and outside curve C, respectively. To find
C such that E(C1, C2, C) is minimised, the level set method may be used so that curve C is represented by
the zero level set of a signed function @(x, y, n), such that:
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where m is the number of pixels outside the curve.

Let us initialise function @(x, y, n) as the signed distance function of each (x, y) point to the nearest curve
point. (Function g(x, y, n) takes value 0 on curve C(p, n) = {(x, v)lgp(x, y, n) = 0}) So, by using the Heaviside
function H, the Dirac measure 0 , the energy function can be rewritten over the entire domain rather than
separately inside or outside curve C. The value of ¢ is negative inside the curve and positive outside the
curve. Let us define:
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where all summations now are over all image pixels.
Then, it can be shown [6], that the evolution of function g(x, v, n) that leads to the minimization of the
energy function (5) is given by
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where An is the time step and ¢ " i, =9(xi, y j, n). In all experiments we performed, we selected An = 0.1.
So, for every pixel (xi, y j), we compute cp”*‘m_ using
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Dividing the image into two grossly symmetric parts

To detect a suitable axis for dividing the image into two parts, roughly symmetrical to each other with respect
to the axis, the correlation method is used in the following way. Note that the tacit assumption here is that
the axis of symmetry is roughly along the vertical direction.

£

Find the sum of all pixels in each column of the image
5,()=310.4). 12<N (10)

Form a digital signal $”1 = (S1(1), S1(2), ..., SI(N)). Reverse the order of elements of 571 to form digital
signal §72:

S, =(S,(N),S,(N-1),....5,(1)) (amn

Find the correlation between S71 and $™2, assuming that the two signals are repeated ad infinitum with
period N

c(k)=

with the understanding that S1(j + k) = §71 (modN(j + k))

A=

S, (j+k)S,(j)s k=1,2,....N (12)
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Shift k*, that corresponds to the maximum correlation (max{c(k), 1 <k < N}), identifies
the column that divides the image into two grossly symmetric parts.

Registration

After the input image has been divided into two parts, the right part is left-to-right mirrored, to facilitate the
registration process. We assume that these two half images are two separate images which are taken at two
successive times t —1 and t. To find a correspondence function 7, that takes each point (x, y) in the first image
and finds the corresponding point 7(x, y) in the second image, we use an intensity-based registration algorithm
assuming an affine transformation (Periaswamya & Faridb 2006: Horn 1986; Barron et al. 1994).

By assuming an affine transformation and brightness constancy, which states that if the location of a

small region changes, the image intensities in the region remain unchanged, we have:
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To estimate parameters “a = (al a2 a3 a4 a5 a6)", the method of minimising the mean squared error is
used:
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where Q denotes a spatial region of interest in the image. Parameter vector ~a is chosen so that E("a) is
minimal.
To simplify the minimization, this equation may be approximated by using a first order Taylor series
expansion
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where / (.) and 1(.)are the spatial derivatives of /(.), and /(.) is the temporal derivative of /(.).
Now, this error equation may be reduced to:
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It may also be expressed as:
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Now the error function may be minimised by differentiating it with respect to “a
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So, by setting this derivative equal to zero, we have:
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Then, we consider each contour, which has been identified in the first stage, as a binary image and

transform the contours in the left part of the image by using the transformation parameters to identify the
corresponding contour in the reference image.

D. Refinement Stage

The next step is to identify the corresponding contours. As our contours are closed curves (or curves that
become closed once the image border is considered), we fill each closed contour in each half image with
a unique label. Each contour is treated separately, so contours inside contours are represented in different
layers as shown in Figure 1. In this figure, / , ..., [, represent distinct labels of the pixels of the corresponding
regions.



Once registration of contours has been achieved, we identify for each contour the contour with which
it corresponds in the other half of the image, by checking the contour with which it shares the maximum
pixel overlap. To avoid contours of significantly different sizes being matched, we start by considering the
contours with the largest areas.

We start by ranking the contours of both half images according to their area, in decreasing order.

FIGURE 1. Different contours are represented in different layers

We consider the largest contour of one image, and by checking the labels of the registered contours, we
identify an overlapping measure between this contour and all contours of the other half image with which
it has common interior pixels after registration. Let us call A the contour we consider and Bi one of the
contours of the other half image. For each pair of contours A and Bi considered, we compute an overlapping
measure

#(ANB)

S(A, B) = (20)
#(A) + #(B) — #(ANB)

where #(A) means the area i.e. the number of pixels inside contour A. For contour A we identify its paired
contour Bi* to be the one that maximises S(A, Bi), i.e. i* = arg{max I S(A, Bi)}. Once two contours have
been matched, they are removed from the stacks of contours of the two half images and the next contour in
the top of the stack is considered. When one or the other stack becomes empty, the process stops.

The process may be repeated by starting with the contours of the other half-image, in case the order by
which we do the matching affects the result. Pairs of contours that have been identified by both routes are
considered as matched contour pairs. Note that this process takes place using the two registered parts of the
image, but once a corresponding pair of contours has been identified, the processing that will follow will use
the original unregistered contours. After finding the corresponding contours, the next step of this algorithm is
to identify the corresponding points on each paired contour. To find which point of the first contour corresponds
to which point of the second contour, shape context expressed by using log-polar histograms (Belongie et
al. 2002; Scott & Nowak 2006) is used. Consider two paired contours A(p) and B(q). each represented by
a set of m™ and n” points respectively (m™ < n”). The shape context of a contour point is a histogram which
expresses the relation of that point to the remaining points of the contour. The histogram is built by dividing
the space around that point into k bins and counting the number of points in each bin. The corresponding
points of the two contours are expected to have similar histograms. The shape context of point pi of the first
contour is defined by
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where bin(k) is uniform in a log-polar coordinate system. Assume Ai j = A(pi, gj) is the cost of matching
two points pi and gj which is defined as
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where hi(k) and hj(k) are the shape contexts of pi and gj, respectively.
To find the best match of contour points, the total cost of matching points is minimised:

i
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E. Symmetry point identification

We may find a local axis of symmetry between the two contours by computing the central points of the lines
joining corresponding points of the contours. However, if more than one pair of points are matched along
the horizontal direction, we shall extract several points along that direction that could be considered as
belonging to the symmetry axis. Therefore, we present a method which uses the lateral continuity constraint
to find the axis of symmetry.

In this method we formulate the problem as one of regularisation, where the symmetry axis is estimated
so that its distance from the variable number of candidate points, identified in each line from the multiple
contour matched points, is minimised and at the same time the variation of the position of the axis between
neighbouring lines is also minimised. For this purpose, we define a cost function. Figure 2 shows a possible
axis of symmetry plotted against the row index of an image. For each value of i we may have several candidate
points for the axis. Let us call them g1, g2, ..., gK(i). K(/) may be 0, 1, ... for different values of i. These are
the points identified by matching contour pomtb along each line of the image. Let xi denote the true position
of the axis along row i. We wish to define all values of xi by minimizing
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where A is a parameter that controls the amount of smoothing we impose on the axis. This is a
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FIGURE 2. Locations of multiple symmetry points

quadratic function in the unknowns and the true position xi may be estimated by differentiating the quadratic
function.
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For U to be minimum, its derivative with respect to all independent variables must be zero:
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The above equations represent a set of linear equations. Therefore, these equations may be written in
matrix form as

SX=F=X=S"F| (33)

where S, X and F are defined as
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F. Straightening the symmetry axis and identifying the abnormalities

As noted previously, reflective symmetry is one of the main characteristics of the human body that may be
used as a cue for detecting and identifying abnormalities or deformities. Therefore, to indicate any suspicious
regions in the medical image, it is necessary to compare the two sides of the image divided by the extracted
axis of symmetry. Moreover, to facilitate comparison of the left side with the reflected right side of the
image, the local axis of symmetry may be made straight by alignment of the image pixels. The alignment
can be done by shifting the pixels of each line so that the points of reflective symmetry of all image lines
are aligned. Then, to identify a deformity area, the absolute difference of the left side and the reflected right
side of the imaged organ is computed. Note that small misalignments along the boundaries of the various
tissues may appear as differences between the two halves. To identify the significant differences, grey scale
opening is used to remove thin lines from the difference image, and enhance the significant differences.
Figure 3 shows the example of an image with facial trauma where the trauma region and the swelling of
one side of the head are identified.

(b)

FIGURE 3. (a) Absolute difference of two halves of the image of a head. The result has been scaled so white
corresponds to zero difference. (b) After applying grey scale opening with a 15x15 structuring element

G. Degree of bone displacement

In some cases, the surgeons are interested in the rotation angle between the local axis of symmetry and the
straightened axis of symmetry. For example, in cosmetic plastic surgery, this may help the surgeon to work
out the displacement of a bony part in one side of the head in comparison with the other side. To work this
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angle out, the local axis of symmetry is first fitted by a set of line segments by minimising the least square
error fitting function
d
E=3[y-7(x)] =3[ ~(ex +B)] 37)
where (xi, yi) are the local axis symmetry points, d is the number of points to be fitted by the line segment

and £ (xi) is the line segment that is defined by computing coefficients ¢ and f . The coefficients are estimated
by minimising the error function E:
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FIGURE 4. (a) /, is a fitted line from all points, /, is a fitted line from all points above point A, and /, is a fitted line from
all points below A. (b) The solid line is the %tralghtened axis, the dashed line is a set of line segments fitting the local
points of symmetry, and 0, 6, etc. are the angles between the straightened axis and the local axis of symmetry
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Identifying a broken line, consisting of several line segments, that fits in the least square error sense a

set of points, is an iterative process. Let us assume a set of data points as shown in Figure 4(a). The process

of fitting a broken line to these points has several stages, as follows.

1) First, o and P are estimated from all the data points and all points are fitted with line /,.

2) Then we find the point that is at maximum distance from / . It is point A.

3) We consider all points above A and fit line /, to them.

4) We consider all points below A and fit line /, to them.

5) We then find the point that is at maximum distance from ,. If this distance is above a threshold, we break
line /, to two parts, like we did with line /1. If not, we accept line /, as a good fit to its points.

6) We do the same for line /..

We repeat this process until all points are fitted with line segments from which they are ata distance less
than the threshold.

Then, after computing all line segments, the requested angles 6 j are found by computing the angles
between the estimated segments and the mid-straight line (see Figure 4).
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RESULTS

As mentioned earlier, our algorithm consists of two parts: 1) extracting the axis of symmetry in CT images,
and 2) identifying deformity areas in CT images. A total of 6 subject images (more than 1000 individual
images) with different types of injury were selected for a validation study of our algorithm.

First, the algorithm was applied on a CT scan facial series (405 images) of a patient with a left orbital
blowout fracture. Figure 5(a) shows some of the input images and Figure 5(b) shows the symmetry axis
extracted by applying our method. The results of obtaining straight axes of symmetries after the pixel
alignment process can be seen in Figure 5(c). Figure 5(d) shows the results of applying the method for
identifying the deformity. The white marks show the difference between the two halves of the images which
in this case correctly identify the orbital blowout fracture. To validate the extraction of the axes of symmetry
method, we computed the correlation coefficient of the two halves of the input images before correction
(original) and after the final alignment. The result of the comparison is shown in Figure 6.

FIGURE 5. Orbital blowout fracture case (a) input images (b) local axes of symmetries (¢) obtained straight axes of
symmetries (d) white marks indicate suspicious areas
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FIGURE 6. Correlation of two image halves before correction (grey) and after
correction (black) for 405 test images of the first patient

The second subject was a female patient with frontotemporal osteoradionecrosis. The CT scan was taken
for planning titanium cranioplasty. The 3D image of the skull of the patient is shown in Figure 7. The black
arrow in the 3D image indicates the defected area. The results of our algorithm are shown in Figure 8. Figure
8(a) shows two CT images of the skull of a female patient. In 8(b), the results of applying our proposed
algorithm for detecting axes of symmetries are shown. Figure 8(c) shows the straight axes of symmetries
and finally, in 8(d), by the bone defected area is detected and shown in white. Also, Figure 9 shows the
validation of the extraction of the axis of symmetry method by computing the correlation coefficient of the
two halves of the input images before correction (original) and after the final alignment.

FIGURE 7. The black arrow indicates the defected arca
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FIGURE 8. Frontotemporal bone defect case (a) input images (b) local axes of symmetries
(c) obtained straight axes of symmetries (d) white marks indicate suspicious areas
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FIGURE 9. Correlation of two image halves before correction (grey) and after

Next, the algorithm was applied on a CT scan facial series of a patient with multiple fractures on his
skull. Figure 11 shows the results for this patient. As it can be seen, the multiple bone fractures and soft
tissue deformities are identified by the method.

The fourth case was a patient with a Nasal bone fracture. Figure 12 shows the results for this case. In
addition, the results of the validation process can be seen in Figure 13.

Fronto orbital neurofibromatosis case was the fifth case that our algorithm was applied to.The results are
shown in Figures 15 and 14.

correction (black) for 107 test images of the second patient

Finally, our algorithm was applied to a normal case. The results are shown in Figures 15 and 16.
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FIGURE 10. Correlation of two image halves before correction (grey) and
after correction (black) for the third patient CT images

(c) (d)

FIGURE 11. Multiple fractures case (a) input image (b) local axis of symmetry (¢) obtained
straight axis of symmetry (d) white marks indicate suspicious areas
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FIGURE 12. Nasal bone fracture case (a) input image (b) local axis of symmetry
(c) obtained straight axis of symmetry (d) white marks indicate suspicious areas
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FIGURE 13, Correlation of two image halves before correction (grey) and after correction
(black) for CT images of the fourth patient
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FIGURE 14, Correlation of two image halves before correction (grey)
and after correction (black) for CT images of the fifth patient
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FIGURE 15. Fronto orbital neurofibromatosis case (a) input images (b) local axis of symmetry
(c) obtained straight axis of symmetry (d) white marks indicate suspicious areas
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FIGURE 16. Correlation of two image halves before correction (grey)
and after correction(black) for CT images of the normal person.
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(a)

FIGURE 17. Normal case (a) input images (b) local axis of symmetry (c) obtained straight axis of symmetry
(d) white marks indicate suspicious areas



DISCUSSION AND CONCLUSIONS

We presented some generic methodology for defining a generalised symmetry axis in medical images. After
detecting the symmetry axis, the difference between the two halves of the imaged organ were quantified.
The only assumption we made was that the axis was roughly vertical.

This however, is not particularly restrictive, as frontal imaging produces such images and in any case
images may be rotated prior to using our algorithm to comply with this assumption. The application we
have in mind is plastic surgery for correcting bone deformations. However, our algorithm is also useful for
finding defected soft tissues. Our method was applied to 1000 images and the detected deformation areas
agreed with the doctor’s diagnosis, in each case.
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