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Abstract  
  

The unexpected occurrence of tsunamis in various countries has highlighted their devastating 

impact on coastal communities. However, detailed assessments of physical vulnerability at the 

village level, particularly in developing countries, are still lacking. This research aimed to evaluate 

the level of physical vulnerability to tsunamis by combining the Coastal Vulnerability Index (CVI) 

with remote sensing and Geographic Information System (GIS) approaches in 12 coastal villages 

in Kuala Muda, Kedah, based on damage history and individual building characteristics. The 

results revealed that Kampung Kuala Muda experienced the highest historical damage, with a total 

of 381 buildings evaluated. About 97 buildings were classified as high vulnerability, 156 as 

moderate vulnerability and only 44 were in the very low vulnerability category. Overall, villages 

with a history of moderate to very high damage, such as Kampung Paya and Kampung Masjid, 

predominantly had moderately vulnerable buildings. This underscores the significance of 

geographical factors like elevation, proximity and slope in determining vulnerability levels. 

Furthermore, statistical analysis using multinomial logistic regression on five physical indicators 

such as elevation, inundation, land use, slope and proximity. The result indicated that slope was 

the most reliable factor influencing vulnerability. Inundation and elevation followed as significant 

contributors for high vulnerability, with a p-value of less than 0.05. Additionally, the distance 

factor demonstrated a significant negative effect, suggesting that locations farther away from major 

geographic features were at a lower risk. The findings of this research emphasize the need for 

mitigation strategies tailored to the vulnerability profile of each village, including strengthening 

building structures. 
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Introduction 

 

Tsunamis are catastrophic natural events that severely impact coastal communities, infrastructure 

and the environment (Frankenberg et al., 2020; Jihad et al., 2020; Krichen et al., 2024; Cisternas 

et al., 2024). These events cause widespread destruction to build environments, such as housing, 

roads and public facilities, highlighting the importance of assessing physical vulnerability for 

effective disaster risk management. Physical vulnerability, which refers to the vulnerability of 
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physical structures to tsunami impacts, is essential for understanding potential risks and informing 

mitigation strategies (Jelínek & Krausmann, 2008; Sumaryono, 2010; Williams et al., 2024). 

Therefore, Geographic Information Systems (GIS) and remote sensing have emerged as crucial 

tools in spatially mapping and assessing physical vulnerability with precision, enabling more 

effective disaster risk reduction strategies ( Ismail et al., 2012; Najihah et al., 2014; Deepak et al., 

2020; Skoufias et al., 2020; Sauti et al., 2021; Jundullah & Wijayanto, 2022; Syafiq & Azri, 2023; 

Kundan et al., 2024). 

Kota Kuala Muda, located in Kedah, Malaysia, was heavily impacted by the 2004 Indian 

Ocean tsunami, resulting in significant loss of life and extensive damage to infrastructure (Asmawi 

& Ibrahim, 2014; Mustakim et al., 2020; Moon et al., 2022). This area, characterized by low 

elevation and flat terrain, remains highly vulnerable to future tsunami events (Sauti et al., 2021; 

Benazir et al., 2023; Xhafaj et al., 2024). While numerous global studies have successfully applied 

GIS and remote sensing in tsunami vulnerability assessments, micro-scale studies that focus on 

household-level physical vulnerability in Malaysia remain scarce. 

Tsunami disaster research in Malaysia generally addresses disaster management at a 

broader scale, without incorporating detailed physical indicators that are essential for evaluating 

tsunami vulnerability (Chong & Kamarudin, 2018; Rosmadi et al., 2023). While tsunamis are rare 

in Malaysia, their potential impact can be significant if they occur unexpectedly (Ahmadun et al., 

2020a; Moon et al., 2022). Critical parameters such as slope, elevation, land use, inundation levels, 

and proximity to coastlines are often analyzed in isolation, leading to fragmented and incomplete 

risk assessments (Koroglu et al., 2019). This lack of integration results in insufficient evidence to 

develop effective, localized risk reduction strategies, particularly for the most vulnerable 

communities (Schmidt, 2023).  

Vulnerability is commonly understood as the interaction between exposure, sensitivity and 

adaptive capacity. Therefore, the aim of this research is to develop a comprehensive physical 

vulnerability map for tsunami vulnerabilities in Kota Kuala Muda, Malaysia, by integrating remote 

sensing data and GIS-based spatial analysis within a CVI framework. In the context of tsunami 

vulnerability such as exposure and sensitivity, this research identifies and spatially map key 

physical vulnerability indicators such as elevation, slope, land use, inundation levels and proximity 

to coastlines using advanced remote sensing and GIS techniques. A Coastal Vulnerability Index 

(CVI) was constructed through a weighted multi-criteria analysis and the physical vulnerability 

levels of different areas within Kota Kuala Muda was assessed, with a particular focus on 

household-scale vulnerability. The results were validated through comparison with historical 

damage data from the 2004 tsunami event.  

 

 

Material and methods 

 

Research area 

 

The research area is located in the Kuala Muda district of Kedah, with coordinates at Latitude 

5.5360° N and Longitude 100.4490° E. This region consists of 12 villages along the northwest 

coast of Peninsular Malaysia as shown in Figure 1. These coastal villages exhibit varied population 

densities and economic activities that rely heavily on natural resources such as fishing, agriculture, 

and tourism (Asmawi & Ibrahim, 2014; Cha et al., 2017; Ahmadun et al., 2020; Mukaramah Harun 

et al., 2023). This area is identified as being vulnerable to the threat of tsunamis, largely due to its 
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low geographic profile and the high risk of damage from rising sea levels (Al-Qadami et al., 2024). 

Kampung Pulai Sayak and Kampung Sungai Meriam are situated close to the coast and engage 

primarily in fishing activities.  

 

 
 

Figure 1. Research area 
 

Kampung Paya, Kampung Masjid and Kampung Kepala Jalan are located slightly inland 

but remain at risk of flooding due to rising sea levels. Kampung Kuala Muda serves as the center 

for the main fishing activities in the region. Kampung Tepi Sungai and Kampung Baru Pulai Sayak 

are near swamps and rivers that are frequently affected by changes in water levels. Lastly, 

Kampung Sungai Yu, Kampung Hujung Matang and Kampung Padang Salim are further from the 

coast; however, they are still vulnerable to the impacts of tsunamis due to their proximity to rivers 

and low-lying areas. The villages mentioned are important for researching tsunami vulnerability 

because they are at risk not only from tsunami waves but also from floods that can impact low-

lying areas near rivers, increasing the potential for damage. Understanding the vulnerability level 

of each village in the research area is crucial for planning effective disaster mitigation strategies, 

including population evacuation and the construction of tsunami-resistant infrastructure (Jurnal et 

al., 2024).  

 

Methodology 

 

The methodology of this research consists of four main interrelated components. First, this 

research conducts field observations by gathering data through questionnaires and interviews with 

experts related to tsunami. The selection of experts is critical in determining the weightage and 
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appropriateness of indicators for tsunami vulnerability assessment. Experts were chosen based on 

their domain expertise, research background and relevance to disaster-related fields. They were 

drawn from three main sectors: academia, government agencies and NGOs. Academic experts 

were selected from diverse disciplines such as disaster science, engineering, physics and social 

sciences with a focus on tsunami-related research. Government experts were identified based on 

institutional responsibilities related to tsunami management, including agencies such as NADMA, 

APM, JPS, the Fire and Rescue Department and PLAN Malaysia. Selection emphasized practical 

experience in disaster preparedness and response rather than rank or designation. NGO 

representatives were chosen for their direct experience in disaster relief and community 

engagement, enabling effective future data collection.  

Three main selection criteria were applied across all expert groups: (i) subject-matter 

expertise, (ii) experience in disaster or community engagement and (iii) job relevance. In addition, 

local experts with individuals from tsunami-affected communities were included for their firsth 

hand knowledge. These included village leaders, community members, or survivors with clear 

memories of the event. Criteria for selection included direct experience with the 2004 tsunami, 

cognitive soundness and appropriate age during the event. However, challenges such as relocation 

or mortality of tsunami victims necessitated preliminary surveys and reference to official records 

to identify eligible local experts. 

This process is very important to select and validate relevant indicators and sub-indicators 

using the Relative Importance Index (RII), where only those that meet the established criteria are 

accepted for further analysis. Second is to determine weights using the Multi-Criteria Decision 

Making (MCDM) method. This includes pairwise comparisons, consistency checks and score 

calculations, leading to decisions based on the weighted factors. Third is the process of remote 

sensing data using Landsat 9 satellite images to extract information such as the Normalized 

Difference Vegetation Index (NDVI) and various band combinations. This data is employed to 

classify land and sea categories and establish coastline boundaries.  

Additionally, a buffering analysis is conducted to assess the distance of buildings from the 

beach. Fourth is to develop vector data by extracting building footprints and village boundaries in 

vector format. These buildings are classified into different categories and a database is created to 

integrate all the information. Finally, combine the results of all these processes to produce a 

tsunami vulnerability map using the Coastal Vulnerability Index (CVI). This last step involves 

using a raster calculator, reclassifying data and converting vector data to raster format to create a 

comprehensive factor map. This systematic approach ensures that the research produces relevant 

outputs for tsunami mitigation. More detailed methodology was illustrated in Figure 2. 
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Figure 2. Research methodology 

 

Description of data 

 

This research employs several parameters to evaluate the area's vulnerability to tsunami impacts, 

including elevation, inundation level, coastal slope, land use and proximity to the coast. The data 

is measured according to a specific classification scale adapted using multi-criteria decision-

making (MCDM) method which is Analytic Hierarchy Process (AHP) and also from previous 

research that developed by Saaty (1987). The range and important of parameters are based on 

expert opinion on tsunami disaster from different agencies. Elevation is categorized into five 

levels, ranging from very low to very high, based on the height of the land above sea level. Areas 

with low elevations (0-5 meters) are deemed highly vulnerable to tsunamis, as water can easily 

overflow into these regions. In contrast, areas with high elevations greater than 20 meters are 

considered very safe. This classification is referenced from a research conducted by Najihah et al. 

(2014). 

Inundation level, which refers to the depth of flooding during a tsunami, is also classified 

into five levels. Areas with inundation depths less than 0.5 meters are categorized as "very low," 

while those with inundation depths greater than 3.0 meters are regarded as highly vulnerable. This 

parameter is based on research by Ismail et al. (2012), which sheds light on the extent and depth 

of water coverage on land during a tsunami. Coastal slope is another factor used to assess 

vulnerability. Steeper slopes greater than 1.2% exhibit a low level of vulnerability, as they help 

mitigate the impact of tsunamis. On the other hand, gentle slopes less than 0.3% are considered 

very vulnerable because tsunami waves can easily inundate these areas. This information is also 

sourced from the research by Ismail et al. (2012). 
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Land use can be categorized into five main types based on the potential effects of a tsunami. 

Forest areas are considered the safest because they can absorb tsunami energy, whereas urban areas 

are deemed the most vulnerable due to their high density of infrastructure and population (Primack 

et al., 1985; EJF report & EJFct, 2006; Spalding et al., 2014; Mikulecký et al., 2023; Benazir et 

al., 2024). This classification is based on research by Sambah et al. (2018). Additionally, coastal 

proximity meaning the distance from the coast is used to assess an area's exposure to tsunamis. 

Areas located less than 100 meters from the coast are at the highest risk, while those situated 

further away which is 400-500 meters have a lower risk. This categorization is derived from a 

research by Najihah et al. (2014). Using these parameters allows for a comprehensive 

understanding of a region's vulnerability to tsunamis, facilitating the creation of more accurate risk 

maps and more effective mitigation strategies. Table 1 shows the parameter for physical 

vulnerability assessment used based on previous research. 

 

Table 1. Parameter for physical vulnerability assessment 

 

Parameter Very low 

(1) 

Low 

(2) 

Medium 

(3) 

High 

(4) 

Very high 

(5) 

Reference 

Elevation 

(m) 

>20 15-20 10-15 5-10 0-5 Najihah et 

al., 2014 

Inundation level 

(m) 

>3.0 2.0-3.0 1.0-2.0 0.5-1.0 <0.5 Ismail et 

al., 2012 

Coastal slope 

(%) 

>1.2 1.2-0.9 0.9-0.6 0.6-0.3 <0.3 Ismail et 

al., 2012 

Land use 

(type) 

Forest Water Bare soil Agriculture Urban Sambah et 

al., 2018 

Coastal 

proximity (m) 

400-500 300-400 200-300 100-200 <100 Najihah et 

al., 2014 

 

Data collection and processing 

 

a. Field observation 

 

The primary tool used in this field research is the questionnaire, which is essential for effectively 

collecting large-scale data, particularly when engaging with the local community. Creating the 

questionnaire requires careful consideration to ensure clarity for individuals from diverse 

backgrounds. Experts review the questions to avoid addressing any sensitive issues. The semi-

structured questionnaire designed for this research includes both open and closed questions, 

facilitating the collection of both quantitative and qualitative data. It is strategically aligned with 

methods such as the Analytical Hierarchy Process (AHP), which involves comparing various 

indicators and sub-indicators. The questionnaire is divided into three main sections, intended for 

response by both experts and non-experts. Additionally, a field survey was conducted in the area 

affected by the tsunami in Kuala Muda to gather data on the impact of the disaster. However, a 

challenge for this research is that the effects of the tsunami, which occurred 20 years ago, have 

mostly faded. Only a few locations have been transformed into historical monuments related to 

the tsunami, which can be referenced for this research, as shown in Figure 3. 
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Figure 3. Field observation  

 

b. GIS and remote sensing data 

 

This research employs a combined approach using Geographic Information System (GIS) and 

remote sensing technologies to assess the physical vulnerability in the area of Kota Kuala Muda, 

Kedah. The primary data utilized in this research includes village boundary vector data, the 

locations of houses in each village, Landsat 9 satellite imagery from 2024 and Digital Elevation 

Model (DEM) data obtained from the ALOS mission. The vector data is used to develop a spatial 

database of physical elements on a micro-scale, particularly focusing on the locations of houses 

within the research area. Landsat 9 images facilitate land use classification through a supervised 

classification algorithm, specifically the Maximum Likelihood Classifier (MLC). This 

classification helps identify different categories such as residential areas, agricultural land, forests 

and open spaces, as well as determine coastlines using the Normalized Difference Water Index 

(NDWI) analysis.  

Besides, the DEM data is employed to create maps showing slope, elevation and inundation 

levels. The slope analysis is conducted using the Slope Tool function in GIS, while the inundation 

levels are modelled by simulating rising water levels with the Raster Calculator. ALOS 30m data, 

produced by the Japanese space agency (JAXA), is a valuable source of digital elevation model 

(DEM) data for tsunami vulnerability studies. With a spatial resolution of 30 meters and global 

coverage, this data is highly effective for identifying low-lying coastal areas at a high risk of 

tsunami impact. One of the key advantages of ALOS 30m is its relatively accurate land surface 

elevation information, with a vertical accuracy of approximately ±5 meters. This level of precision 

is adequate for macro-level mapping of risk zones, such as areas with elevations below 10 or 20 

meters above sea level. ALOS 30m offers several benefits for tsunami studies, including its 

application in tsunami flood simulations (inundation modeling) and spatial analysis to locate 

settlements, critical infrastructure and populations within risk zones. Additionally, ALOS 30m is 

particularly valuable for countries like Malaysia, where frequent cloud cover limits the 

effectiveness of regular optical DEM.  

To obtain building data, this research digitizes information from Google Earth, using 

ArcMap software to access precise coordinates. Each building was represented as both polygon 

and point geometries, accompanied by relevant information and characteristics regarding the area 

and its infrastructure. After the digitization process, this research validates each building through 
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site visits and data collection. The WGS 84 coordinate system was used for this research , which 

has been established prior to the digitization process.  

 

c. Data processing 

 

The initial tsunami research included many parameters. However, after evaluation and filtering 

using the Relative Importance Index (RII) method based on expert judgment, only five parameters 

were accepted. Experts determined that these parameters are appropriate for the situation in 

Malaysia, which lacks a triggering factor. Once these preferences are assigned, a consistency check 

is carried out to ensure that judgments are logical and free from contradictions. This check involves 

calculating the Consistency Index (CI) as shown in equation 1 and then dividing it by the average 

random CI value to obtain the Consistency Ratio (CR) as shown in equation 2. Here, λmax 

represents the largest principal eigenvalue and n denotes the number of elements in the 

comparison. 

 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) =
𝜆 −  𝑛  

𝑛 − 1
                                                     (1) 

 

To calculate the consistency ratio (CR), divide the consistency index by the random mean 

of the CI developed by Saaty (1987). According to Saaty 1980, if the CR value exceeds the 

acceptable limit, it is crucial to recalculate and repeat the pair-wise step. Saaty 1980 categorized 

the matrix size based on the random consistency index (RI) value, which ranges from one to nine.  

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑅𝑎𝑡𝑖𝑜𝑛 (𝐶𝑅) =
𝐶𝐼 

𝑀𝑒𝑎𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝐶𝐼
                                                     (2) 

 

The analysis process consists of several key steps. First, Landsat 9 data undergoes 

radiometric and atmospheric corrections to enhance the accuracy of land use classification, which 

is then assessed using a confusion matrix that references field data. Second, Digital Elevation 

Model (DEM) data is utilized to extract relevant maps showing slope, elevation and simulated 

immersion levels for low-lying areas that may be vulnerable to tsunamis. Third, vector data 

representing house locations and village boundaries is integrated with land use maps, coastlines, 

slopes, elevations and immersion levels through overlay analysis in Geographic Information 

Systems (GIS). Vulnerability assessments are conducted at a highly detailed level, analysing each 

home individually. The vulnerability of each house is evaluated based on its distance from the 

beach, the surrounding land use, slope, elevation and risk of submergence. This methodology is 

supported by observations from previous studies, which are incorporated into this research to 

create a more comprehensive mapping of vulnerability levels. 

In general, using Landsat 9 alone is not suitable for analyzing individual buildings due to 

its relatively low resolution. However, in this research, Landsat 9 is appropriate because the 

assessment is complemented by fieldwork as a validation method. Each house in the research area 

is a village house with a yard approximately 30 meters in size, which aligns well with the Landsat 

pixel resolution. Additionally, this research does not examine infrastructure aspects, such as 

construction level or type. Instead, it focuses solely on the landform characteristics surrounding 

the buildings and the types of land use. Therefore, Landsat 9 is highly suitable for land use 

classification in this research area, particularly due to the availability of various spectral bands that 

enhance the classification process. 

https://doi.org/10.17576/geo-2025-2103-03


Geografia-Malaysian Journal of Society and Space 21 issue 3 (39-60)  

© 2025, e-ISSN 2682-7727  https://doi.org/10.17576/geo-2025-2103-03                 47 

 

 

The outcome of this approach is a physical vulnerability map that illustrates the risk level 

for each house in the research area. This combined method of GIS and remote sensing not only 

facilitates a more accurate spatial assessment but also serves as a crucial foundation for risk 

mitigation planning. This includes initiatives such as constructing tsunami-resistant infrastructure 

or relocating residents to safer areas. 

 

d. Data normalization 

 

Before conducting spatial analysis in GIS software, it is essential to normalize all physical 

parameters, such as elevation, inundation level, coastal slope, land use and coastal proximity. This 

normalization ensures scale uniformity and allows for comparability among the indicators. For 

continuous data such as elevation, inundation level, slope and coastal proximity using equation 3: 

 

𝑋 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
(𝑥 − 𝑥 𝑚𝑖𝑛)

(𝑥 −  𝑥 𝑚𝑖𝑛 ) 
                                                      (3)  

  

Normalization method is applied to convert each value to a standard range between 0 and 

1. In fuzzy logic, the selection of membership functions depends on the nature of the relationship 

with vulnerability. For instance, parameters like lower elevation and steeper slopes indicate a 

higher level of vulnerability, which is addressed by using the fuzzy small function. In contrast, for 

categorical data such as land use, vulnerability scores are assigned based on existing literature and 

expert judgment. Each land use class is categorized according to its relative level of vulnerability 

to tsunami impacts. These normalized values are then utilized in a weighted multi-criteria analysis 

to generate an empirical and spatially explicit Coastal Vulnerability Index (CVI). 

 

e. Coastal vulnerability index (CVI) method 

 

This research employs the Coastal Vulnerability Index (CVI) to assess the physical vulnerability 

of coastal areas to tsunamis. The CVI concept, introduced by Gornitz (1991), has been widely 

utilized in studies related to coastal risk. The CVI is a numerical index that integrates several 

physical parameters to evaluate the vulnerability of a specific area. In this research, parameters 

such as slope, elevation, proximity to the coast, land use and potential inundation levels were 

considered. The following equation 4 is used to calculate the CVI value: 

 

𝐶𝑉𝐼 =  √
𝑋1 ∗  𝑋2 ∗  𝑋3 ∗ … … … . 𝑋𝑛

𝑛
                                               (4) 

 

In this context, X1, X2, X3, ……, Xn represent the values of each normalized parameter, 

with n indicating the total number of parameters considered. A higher Coastal Vulnerability Index 

(CVI) value signifies a greater vulnerability to tsunamis. This approach enables the integration of 

various physical parameters, providing a comprehensive overview of the vulnerability levels in 

coastal areas. The application of the CVI in this research is instrumental in identifying regions that 

require immediate attention for risk mitigation and sustainable development planning. 
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f. Evidence-based approach (tsunami event 2004) 

 

The rating scale used to classify the impact of tsunamis along the northwest coast of Peninsular 

Malaysia measures the impact based on the level of inundation (depth of flooding caused by 

tsunami waves), which indicates the depth of water that submerges the area during a tsunami event. 

This scale is divided into five categories, starting from Very Low Impact (1) which occurs when 

the water level rises by less than 0.5 meters, where the impact is very minimal and only affects 

coastal areas such as vegetation and beaches without causing major damage to infrastructure or 

human settlements.  

Low Impact (2) occurs when the water level rises between 0.5 and 1.0 meters, which can 

affect low-lying areas close to the coast, causing minor damage to structures not built to withstand 

flooding. Moderate Impact (3) occurs when the water depth is between 1 and 2 meters, which will 

affect a wider area and cause more serious damage to buildings and infrastructure, with a higher 

risk to the safety of residents and require evacuation efforts. High Impact (4) occurs when the 

water level rises between 2 to 3 meters, submerging a larger area and causing major damage to 

structures and utilities, requiring emergency action and evacuation of residents to reduce loss of 

life. 

Finally, Very High Impact (5) occurs when the level of inundation exceeds 3 meters, where 

almost the entire coastal area was submerged, causing great destruction to buildings, roads and 

ecosystems and requiring large-scale restoration efforts. This scale is used to assess the level of 

vulnerability of coastal areas to tsunamis, providing a clear picture of the potential risk and 

enabling more effective mitigation planning such as the construction of tsunami-resistant 

infrastructure or the relocation of residents to safer areas. This ranking of impact is based on Ismail 

et al. (2012) was used as a reference that used in this research was illustrated in Table 2. 

 

Table 2. Ranking scale used for tsunami impact classification for N-W coast of Peninsular 

Malaysia 

 

Variables Very low 

impact 

(1) 

Low impact 

(2) 

Moderate 

impact 

(3) 

High impact 

(4) 

Very high 

impact 

(5) 

Inundation level 

(m) 

H  < 0.5 

m 

0.5 <  H <1.0 

m 

1.0 < H < 2.0 

m 

2.0 < H <3.0 

m 

H >3.0 m 

 

 

Result and analysis 

 

Relative Importance Index (RII) and Consistency Ratio evaluate (CR) 

 

In this research, 5 indicators were evaluated by six experts from different professions such as 

academics, NGOs and the government who were involved in the tsunami disaster. The Relative 

Importance Index (RII) was used to determine the relevance of each indicator to the research area 

in Malaysia, which rarely experiences tsunamis. The RII calculation is based on a formula created 

by other researchers and applied in this research. Initially, 8 respondents were interviewed to 

establish the weightage for each indicator and sub-indicator. After conducting an expert evaluation 

based on the established criteria, two respondents didn't meet the criteria and were therefore 
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excluded from the research. As a result, only six experts were considered and used as references 

in this research. 

In the Relative Importance Index (RII) assessment, a value of 0.5 or higher is considered 

acceptable, while a value below 0.5 is rejected. The RII calculation takes into account the total 

weight given by respondents (W), the highest weight assigned (A) and the number of respondents 

(N). The results show that these five indicators are important indicators in the research of 

vulnerability to tsunamis because they obtained RII values exceeding 0.5 for all indicators assessed 

by experts. Therefore, these five indicators are accepted and can be continued for the next process. 

In AHP analysis, the Consistency Ratio (CR) value is used to assess the consistency of the 

judgments made in the pairwise comparison matrix. If the CR value is less than 0.1 (10%), then 

the level of consistency is considered acceptable and the decision can be continued. On the other 

hand, if the CR value is equal to or greater than 0.1, this indicates that the judgments are 

inconsistent and the comparison process needs to be reviewed to ensure the validity and reliability 

of the analysis results.  

In this research, the obtained consistency ratio value is 0.2%, which is below the acceptable 

tolerance level. Therefore, it is considered acceptable to proceed to the next step. Calculating this 

consistency ratio is crucial to ensure that the weightings are appropriate and relevant for this 

research, based on the perspectives of experts and previous research. This is because some 

indicators may only be applicable in certain areas and not suitable for Malaysia. 

 

Land use and land cover classification 

 

Based on Table 3, the classification results using the Maximum Likelihood method show a high 

performance with an overall accuracy of 89% and a Kappa Coefficient of 0.835, which reflects a 

very good agreement between the predicted value and the actual value. Water body, bare land, and 

vegetation achieved a high User's Accuracy of 100%, indicating that all predicted pixels for this 

category were accurate without any errors. The Producer's Accuracy for water body and urban area 

are 97.62% and 100% respectively, which shows that almost all the real pixels for this category 

are successfully detected by the model.  

However, the main weakness was found in the urban area category, with a User's Accuracy 

of only 45%, where many urban pixels were misclassified as vegetation, reflecting the challenge 

in distinguishing categories with similar spectral characteristics. On the other hand, the vegetation 

category performed well with a User's Accuracy of 100% and a Producer's Accuracy of 82.93%, 

although there was some misclassification against other categories. The success of the model in 

classifying the majority of categories such as water bodies and bare land, which have clear spectral 

features, shows the effectiveness of this method. Despite the weaknesses in the urban category, the 

results of this classification still provide a reliable land use map with the potential for improvement 

for certain categories through the use of additional data or higher resolution parameters. The final 

output for classification was shown in Figure 4. 
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Table 3. Accuracy assessment for land use classification 

 

 Wate

r 

body 

Urban 

area 

Bare 

land 

Vegetatio

n 

User's 

Accuracy (%) 

Water body 26 0 0 0 100 

Urban area 0 9 0 11 45 

Bare land 0 1 5 0 100 

Vegetation 0 3 0 47 100 

Total 26 13 5 58  

Producer's Accuracy 

(%) 

97.62 100 62.5 82.93  

Overall accuracy (%) 89% 

Kappa Coefficient 0.835 

 

 
 

Figure 4. Land use & land cover classification using Maximum Likelihood 
 

Slope, coastal proximity, elevation and inundation level extraction 

 

The results of the map analysis indicate the level of tsunami vulnerability in coastal areas of the 

research region, based on four main parameters which is slope, proximity to the coast, elevation, 

and inundation level. The slope map reveals that most coastal areas have low slopes less than 0.5%, 

indicated in red, which signifies high vulnerability since tsunami waves can easily spread in such 

areas. Therefore, areas with steep slopes less than 1.0% are marked in orange and red, showing 

they are more exposed to tsunami risks. Besides, the map illustrating distance from the coast shows 

that regions within 100 meters of the shore, colored red, are categorized as high-risk zones. As the 

distance from the coast increases, the risk diminishes, with areas greater than 500 meters 

represented in green and considered safer. 

In the elevation map, coastal areas with low elevation 0–5 meters are marked in yellow, 

indicating a high vulnerability to tsunamis. In contrast, areas with high elevation above 20 meters 
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are colored blue and are at a lower risk. Most coastal regions in northern Kedah have low 

elevations, underscoring their vulnerability to tsunami impacts. The inundation level map 

illustrates tsunami depth, with areas experiencing high inundation levels greater than 5 meters 

shown in red, while areas with low inundation less than 2 meters are represented in dark blue. 

Coastal regions recorded significant flooding, while areas further inland experienced less water 

inundation. Overall, this analysis reveals that regions with low slopes, close proximity to the coast, 

low elevation and high flood levels are the most vulnerable to tsunami effects. These insights 

provide a comprehensive understanding of each coastal area's vulnerability and are crucial for 

informing risk mitigation planning and disaster management strategies moving forward. Figure 5 

illustrates the extraction data from DEM at the research area. 

 

 
 

Figure 5. Data extraction from DEM; a) slope, b) Coastal proximity, c) Elevation, d) Inundation 

level 

https://doi.org/10.17576/geo-2025-2103-03


Geografia-Malaysian Journal of Society and Space 21 issue 3 (39-60)  

© 2025, e-ISSN 2682-7727  https://doi.org/10.17576/geo-2025-2103-03                 52 

 

 

Physical vulnerability level for every individual building 

 

A research on physical vulnerability levels across 12 coastal villages in Kuala Muda provides a 

comprehensive overview of vulnerability classifications by village and building type, as illustrated 

in Figure 6. Kampung Kuala Muda, which has recorded the highest historical damage due to past 

tsunamis, also contains the largest number of buildings, totalling 381. Of these, 156 buildings fall 

under the medium vulnerability category, 97 are classified as highly vulnerable and only 44 are 

categorized as having very low vulnerability. This profile highlights Kampung Kuala Muda as 

particularly susceptible to tsunami risk, underscoring the urgent need for targeted and immediate 

mitigation measures. Kampung Paya, which has experienced moderate damage in the past, also 

comprises a significant number of buildings, with a total of 310. In this village, 127 buildings are 

classified as having medium vulnerability, 68 as low, 58 as high and 13 as very high vulnerability.  

 

 
 

Figure 6. Physical vulnerability map for individual buildings in Kuala Muda, Kedah 

 

While Kampung Paya demonstrates a notable level of vulnerability, it is not as severe as 

that of Kampung Kuala Muda. On the other hand, villages like Kampung Baru Pulai Sayak, which 

has a very low history of damage, recorded a much smaller number of buildings 65 in total. Most 

buildings in this village fall into the low with 21 buildings and medium with 27 buildings 

vulnerability categories, indicating that the tsunami risk in this area is more manageable compared 
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to others. However, there are still some buildings classified in the high and very high categories, 

with 7 and 3 buildings, respectively. 

In contrast, villages such as Kampung Masjid and Kampung Kepala Jalan, despite having 

a history of very high damage, exhibit a similar vulnerability pattern. Kampung Masjid has 225 

buildings, with the majority about 91 buildings categorized as medium vulnerability. Similarly, 

Kampung Kepala Jalan, which has 129 buildings, also shows a predominance of medium 

vulnerability structures about 41 buildings. This pattern suggests that while the history of tsunami 

damage influences vulnerability levels, other physical factors such as geographic location, 

elevation and distance from the coast also play crucial roles in determining vulnerability. Overall, 

most villages exhibit a moderate level of vulnerability, particularly those with a history of 

moderate to very high damage, such as Kampung Kuala Muda and Kampung Paya.  

In contrast, some villages with a history of low damage, like Kampung Sungai Meriam and 

Kampung Pulai Sayak, have a majority of buildings categorized as low to moderate vulnerability. 

This analysis enhances our understanding of the variations in tsunami risk in the coastal area of 

Kuala Muda. The findings also highlight the need for implementing mitigation measures tailored 

to each village's vulnerability level. These measures may include improving building structures, 

developing coastal protection infrastructure and planning evacuation procedures for buildings in 

high and very high vulnerability categories. This research serves as a crucial foundation for more 

strategic and effective disaster risk planning. For a more detailed explanation about vulnerability 

level estimation can refer to Figure 7 and Table 4. 

 

Table 4. Tsunami vulnerability estimation for individual village and building 

 

No. Village Damage 

based of 

history 

Estimation vulnerability level Total 

number 

of 

buildings 
(Number of building) 

Very 

low 

Low Medium High Very 

high 

1 Kampung Pulai 

Sayak 

Very Low 44 63 110 35 8 260 

2 Kampung Sungai 

Meriam 

Low 35 14 39 15 7 110 

3 Kampung Paya Moderate 44 68 127 58 13 310 

4 Kampung Masjid Very high 44 50 91 32 8 225 

5 Kampung Kepala 

Jalan 

Very high 44 19 41 17 8 129 

6 Kampung Kuala 

Muda 

Very high 44 71 156 97 13 381 

7 Keda Kampung 

Tepi Sungai 

High 42 18 41 16 8 125 

8 Kampung Tepi 

Sungai 

High 44 27 62 20 11 164 

9 Kampung Baru 

Pulai Sayak 

Very low 21 7 27 7 3 65 

10 Kampung Sungai 

Yu 

Low 44 20 50 16 11 141 
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11 Kampung Hujung 

Matang 

Moderate 44 20 48 16 11 139 

12 Kampung Padang 

Salim 

Moderate 24 34 27 7 4 96 

 

 
 

Figure 7. Bar graph diagram based on village area 

 

Statistical test for significant indicators 

 

Multinomial logistic regression was used to analyze the impact of five indicators which is 

elevation, inundation, land use, slope and proximity as illustrated in Table 5. On vulnerability 

classification, with Class 2 serving as the reference group. The analysis identified several 

statistically significant predictors that varied by the comparison category. For the comparison 

between Class 3 and Class 2, three predictors were found to be statistically significant. Elevation 

demonstrated a positive association with the likelihood of being classified as Class 3 (B = 0.335, 

p = 0.016, Exp(B) = 1.398, 95% CI [1.065, 1.836]), indicating that an increase in elevation 

corresponds to higher odds of belonging to Class 3. Land use was also significant (B = 0.500, p = 

0.029, Exp(B) = 1.648, 95% CI [1.053, 2.580]), suggesting that certain land use types contribute 

to higher vulnerability levels. The most significant predictor was slope (B = 0.366, p < 0.001, 

Exp(B) = 1.442, 95% CI [1.276, 1.630]), indicating that steeper slopes substantially increase the 

likelihood of a location being classified as Class 3. In contrast, neither inundation nor proximity 

showed statistically significant effects in this comparison (p > 0.05). 

For the comparison between Class 4 and Class 2, a wider array of variables proved to be 

highly significant. Elevation continued to be a strong predictor (B = 0.876, p < 0.001, Exp(B) = 

2.401, 95% CI [1.796, 3.208]) and inundation history emerged as a dominant factor (B = 1.418, p 

< 0.001, Exp(B) = 4.127, 95% CI [2.503, 6.806]), indicating that areas with a higher history of 

inundation are over four times more likely to be classified as Class 4 compared to Class 2. Slope 

also maintained a significant positive effect (B = 0.600, p < 0.001, Exp(B) = 1.823, 95% CI [1.591, 
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2.088]). Interestingly, proximity to certain features (such as coastlines and rivers) was negatively 

associated with Class 4 membership (B = -0.963, p < 0.001, Exp(B) = 0.382, 95% CI [0.309, 

0.471]), indicating that locations further away from these features were less likely to be classified 

in the highest vulnerability category. However, land use was not a significant predictor in this 

group (p = 0.356). Overall, these findings emphasize that slope is the most consistently influential 

factor across both vulnerability transitions, while inundation history and elevation are particularly 

critical for the most severe vulnerability classification. The model supports the incorporation of 

physical and geographical parameters into vulnerability classification frameworks, with important 

implications for targeted spatial planning and disaster risk reduction strategies.  

 

Table 5. Multinomial logistic regression test 

 

Parameter Estimates 

CLASS a B Std. 

Error 

Wald d

f 

Sig. Exp(B) 95% 

Confidence 

Interval for 

Exp(B) 

Lower 

Bound 

Upper 

Bound 

2 Intercept 6.371 1.572 16.429 1 0.00

1 

   

elevation -0.876 0.148 35.039 1 0.00

1 

0.417 0.312 0.557 

Inundation -1.418 0.255 30.869 1 0.00

1 

0.242 0.147 0.399 

Land use 0.205 0.222 0.852 1 0.35

6 

1.227 0.794 1.896 

slope -0.600 0.069 75.224 1 0.00

1 

0.549 0.479 0.628 

proximity 0.963 0.107 80.363 1 0.00

1 

2.620 2.122 3.233 

3 Intercept 1.932 1.367 1.997 1 0.15

8 

   

elevation -0.541 0.108 24.869 1 0.00

1 

0.582 0.471 0.720 

Inundation -1.241 0.216 32.947 1 0.00

1 

0.289 0.189 0.442 

Land use 0.704 0.198 12.637 1 0.00

2 

2.023 1.372 2.983 

slope -0.234 0.051 20.677 1 0.00

1 

0.791 0.715 0.875 

proximity 0.927 0.083 125.48

5 

1 0.00

1 

2.526 2.148 2.971 

a. The reference category is: 4 
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The findings of this research demonstrate that the utilized approach is highly relevant and 

has significant potential for application in future tsunami vulnerability modeling. This research 

focuses on an area that has experienced minimal physical changes, making it a suitable basis for 

assessing long-term vulnerability. As a result, the findings can potentially be generalized and 

applied more broadly to other coastal regions with similar geomorphological characteristics, 

particularly regarding soil structure and landform. This approach aligns with prior studies, such as 

those by Najihah et al. (2014), which also employed indicators like land use, elevation and distance 

from the coast. However, this research improves upon previous work by incorporating additional 

indicators, such as inundation level, which facilitates a more in-depth vulnerability analysis. 

Moreover, the analysis scale in this research is significantly more detailed, utilizing a 'micro-scale' 

approach that focuses on the smallest scale to individual building footprints rather than the village 

scale approach used in earlier studies. 

In addition, the results of the statistical analysis in this research indicate that land use 

indicators may not be ideal as the primary components in a micro-scale context. In contrast, factors 

such as slope were found to have a more significant impact on determining vulnerability levels. 

This aligns with the findings of Ismail et al. (2012), who also utilized the CVI index. However, 

there are notable methodological differences between this research and Ismail et al. (2012) 

research. While their research assessed vulnerability at the village level in aggregate before 

breaking it down to the household level, our research began the assessment directly at the 

household level, using specific indicators. This approach enables a more comprehensive and 

targeted identification of risk areas, enhancing the clarity and usability of the findings for effective 

risk mitigation planning. 

 

 

Conclusion and recommendation 

 

This research provides a comprehensive assessment of coastal areas' vulnerability to tsunamis, 

aligning with Sustainable Development Goal (SDG) 13. The research evaluates the physical 

vulnerability of 12 coastal villages in Kuala Muda, Kedah. The findings indicate that Kampung 

Kuala Muda is the most vulnerable area, with the highest number of buildings which is 381 units, 

a significant portion of which fall into the moderate to high vulnerability categories. Kampung 

Paya also exhibits a notable level of vulnerability, with buildings categorized across all 

vulnerability levels, including 13 buildings classified as very high vulnerability. In contrast, 

villages such as Kampung Pulai Sayak and Kampung Sungai Meriam have experienced low 

damage history and have a high percentage of buildings in the low and moderate vulnerability 

categories. This suggests a more manageable level of risk. However, it is important to note that 

the presence of buildings in the high and very high vulnerability categories in these villages should 

not be overlooked, as they still require targeted mitigation efforts. Based on studies and reports 

regarding the 2004 tsunami, it is evident that most of the buildings affected were located in the 

villages of Kuala Muda, Kedah (Abdullah et al., 2005; Ahmadun et al., 2020b; Asmawi & Ibrahim, 

2014). This demonstrates that this research is highly relevant, supported by accurate reports and is 

well-suited for further development in Malaysia. 

Overall, most villages exhibited moderate vulnerability. This variation was influenced not 

only by their damage history but also by physical factors such as elevation, inundation, land use, 

slope, and proximity to the coast. Statistical analysis using multinomial logistic regression revealed 

that slope was the most significant and consistent factor affecting vulnerability classification. 
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Inundation and elevation also significantly impacted vulnerability, particularly for the highest 

classification which is class 4. Additionally, proximity to the coast showed a notable negative 

relationship; areas situated farther from the coastline tended to be less vulnerable. While land use 

affected vulnerability in Class 3, it did not have a significant impact on Class 4. 

Although this research provides detailed physical vulnerability mapping at the individual 

building level, there are several limitations that need to be acknowledged. First, the scope of this 

research is limited to physical elements such as elevation, inundation, land use, slope and 

proximity distance without considering social or economic dimensions that also play an important 

role in determining the vulnerability level of a community. The historical damage data used is 

based on records that may not fully reflect changes in the actual impact level at all locations, 

especially for areas where changes were poorly demonstrated or not well documented during the 

2004 tsunami. Third, the approach used in this research is static, which should not be the case as 

development growth, land use patterns and potential climate impacts on dynamic vulnerability 

levels. 

Therefore, to improve the accuracy and effectiveness of Disaster Risk Reduction (DRR) 

planning, several suggestions for further research can be considered. First, the integration of socio-

economic elements such as household income, age of residents, education level and access to 

emergency facilities is important to form a more holistic and reflective vulnerability model of the 

reality of the affected community. Second, the development of dynamic vulnerability models that 

take into account land use changes, physical development and community adaptive capacity will 

enable risk assessments that are more responsive to changes over time. Third, the use of advanced 

technologies such as Geographic Information Systems (GIS), remote sensing and artificial 

intelligence (AI) should be increased to support real-time risk mapping and accelerate the decision-

making process. Furthermore, this study has demonstrated that combining data from open sources 

with field data yields quality results suitable for rapid execution. To enhance the study's quality 

further and achieve more specific outcomes, it is recommended to use higher-resolution data, such 

as LiDAR and Unmanned Aerial Vehicle (UAV) data, to improve clarity and accuracy. Finally, 

direct field studies through interviews, questionnaires and local community involvement should 

be implemented to understand risk perceptions and existing adaptive capacity, thus enabling 

community-based risk mitigation planning to be formulated in a more inclusive and effective 

manner. 

 

 

Acknowledgement 

 

This work was funded by the Universiti Teknologi Malaysia (UTM) Digital Infused Research 

(DIR) grant (Ref: Q.J130000.5152.00L74). 

 

 

References 

 

Abdullah, K., Tan, K. S., & Ghazali, N. H. M. (2005, July 3-7). No more in the comfort zone – 

Malaysia’s Response to the december 2004 tsunami [Paper presentation]. International 

Hydrography and Oceanography Conference and Exhibition, Kuala Lumpur. 

Ahmadun, F. R., Wong, M. M. R., & Mat Said, A. (2020a). Consequences of the 2004 Indian 

Ocean Tsunami in Malaysia. Safety Science, 121, 619–631. 

https://doi.org/10.17576/geo-2025-2103-03


Geografia-Malaysian Journal of Society and Space 21 issue 3 (39-60)  

© 2025, e-ISSN 2682-7727  https://doi.org/10.17576/geo-2025-2103-03                 58 

 

 

Al-Qadami, E., Razi, M. A. M., Shah, S. M. H., Ideris, M. F. M., & Mahamud, M. (2024). Insight 

into Kedah State’s Coastal Perils: Tsunamis, floods, and sea level increase. The Journal 

of The Institution of Engineers Malaysia, 84(2), 32.  

Asmawi, M. Z., & Ibrahim, A. N. (2014). The Impacts of tsunami on the well-being of the affected 

community in Kuala Muda, Kedah, Malaysia. Journal of Clean Energy Technologies, 

1(3), 246–250.  

Benazir, Syamsidik, Idris, Y., & Putra, N. P. (2023). Connecting community’s perspectives on 

tsunami risk to anticipated future tsunamis: A reflection from a progress of tsunami 

preparedness from a coastal community in Aceh-Indonesia after 19 years of the 2004 

Indian Ocean Tsunami. Geoenvironmental Disasters, 10, 21.  

Benazir, Triatmadja, R., Syamsidik, Nizam, & Warniyati. (2024). Vegetation-based approached 

for tsunami risk reduction: Insights and challenges. Progress in Disaster Science, 23, 

100352.  

Cerѐ, G., Rezgui, Y., & Zhao, W. (2017). Critical review of existing built environment resilience 

frameworks: Directions for future research. International Journal of Disaster Risk 

Reduction, 25, 173–189.  

Cha, L. S., Naraman @ Kamarul Zaman, N. A., Azmi, N. A., & Mohmad Nordin, N. A. (2017). 

Revitalisasi warisan budaya di Kg. Sg. Emas,Kota Kuala Muda.  

Chong, N. O., & Kamarudin, K. H. (2018). Disaster risk management in Malaysia: Issues and 

challenges from the persepctive of agencies. PLANNING MALAYSIA: Journal of the 

Malaysian Institute of Planners, 16(1), 105–117.  

Cisternas, P. C., Cifuentes, L. A., Bronfman, N. C., Repetto, P. B., & Castañeda, J. V. (2024). 

Earthquake and tsunami preparedness between residents and tourists in coastal 

communities. Progress in Disaster Science, 23, 100343. 

Deepak, S., Rajan, G., & Jairaj, P. G. (2020). Geospatial approach for assessment of vulnerability 

to flood in local self governments. Geoenvironmental Disasters, 7, 35. 

EJF report, & EJFct. (2006). MANGROVES : Nature’s defence against TSUNAMIS- A report on 

the impact of mangrove loss and shrimp farm development ono coastal defences. 

Envrionmental Justice Foundation. 

Frankenberg, E., Sumantri, C., & Thomas, D. (2020). Effects of a natural disaster on mortality 

risks over the longer term. Nature Sustainability, 3, 614–619.  

Gornitz, V. (1991). Global coastal hazards from future sea level rise. Palaeogeography, 

Palaeoclimatology, Palaeoecology, 89(4), 379–398.  

Ismail, H., Abd Wahab, A. K., Mohd Amin, M. F., Mohd Yunus, M. Z., Jaffar Sidek, F., & 

Esfandier J., B. E. (2012). A 3-tier tsunami vulnerability assessment technique for the 

north-west coast of Peninsular Malaysia. Natural Hazards, 63, 549–573.  

Jelínek, R., & Krausmann, E. (2008). Approaches to tsunami risk assessment. JRC Scientific and 

Technical Reports. 

http://labtinti4.df.unibo.it/transfer/sites/default/files/adminRoot/documents/deliverables/

TRANSFER_D8.2_ANNEX_A8.2.3.pdf 

Jihad, A., Muksin, U., Syamsidik, Suppasri, A., Ramli, M., & Banyunegoro, V. H. (2020). Coastal 

and settlement typologies-based tsunami modeling along the northern Sumatra seismic 

gap zone for disaster risk reduction action plans. International Journal of Disaster Risk 

Reduction, 51, 101800.  

Jundullah, M. R., & Wijayanto, A. W. (2022). Natural disaster identification and mapping of 

tsunami and earthquake in Indonesia using satellite imagery analysis (Case research : 

https://doi.org/10.17576/geo-2025-2103-03


Geografia-Malaysian Journal of Society and Space 21 issue 3 (39-60)  

© 2025, e-ISSN 2682-7727  https://doi.org/10.17576/geo-2025-2103-03                 59 

 

 

Aceh, Palu, and Yogyakarta). Preprints. 

Jurnal, B., Administrasi, I., Fajria, R., Fajria, R., & Putera, R. E. (2024). Disaster mitigation 

through the disaster resilient village program in Padang Pariaman District. BISNIS & 

BIROKRASI: Jurnal Ilmu Administrasi dan Organisasi, 31(1), 16-23. 

Koroglu, A., Ranasinghe, R., Jiménez, J. A., & Dastgheib, A. (2019). Comparison of Coastal 

Vulnerability Index applications for Barcelona Province. Ocean & Coastal Management, 

178, 104799.  

Krichen, M., Abdalzaher, M. S., Elwekeil, M., & Fouda, M. M. (2024). Managing natural disasters: 

An analysis of technological advancements, opportunities, and challenges. Internet of 

Things and Cyber-Physical Systems, 4, 99–109.  

Kundan, C., Umank, M., Padam, M., & Omar, J. (2024). Discover geoscience integration of remote 

sensing data and GIS technologies in river management system. Discover Geoscience, 2, 

67. 

Mikulecký, P., Punčochářová, A., Babič, F., Bureš, V., Čech, P., Husáková, M., Mls, K., Nacházel, 

T., Ponce, D., Štekerová, K., Triantafyllou, I., Tučník, P., Sunanda, V., & Zanker, M. 

(2023). Dealing with risks associated with tsunamis using indigenous knowledge 

approaches. International Journal of Disaster Risk Reduction, 86, 103534.  

Moon, W. C., Sidek, L. M., Lau, T. L., Puay, H. T., Majid, T. A., Wahab, A. K. A., & Teo, F. Y. 

(2022). A shared vision on the 2004 Indian Ocean Tsunami in Malaysia: Hazard 

assessments, post-disaster measures and research. Journal of Marine Science and 

Engineering, 10(8), 1088. 

Mukaramah Harun, Zainol, N. A., & Chik, N. (2023). Public expenditures and wellbeing of fishing 

community in Malaysia: A comprehensive review. Journal of Advanced Zoology, 44(S-

53), 406–419.  

Mustakim, N. S., Lateh, H., & Razali, M. Z. (2020). Keberkesanan program kesedaran bencana 

tsunami: Kajian kes di Kota Kuala Muda, Kedah. Geografia-Malaysian Journal of 

Society and Space, 16(2), 66–79.  

Najihah, R., Effendi, D. M., Hairunnisa, M. A., & Masiri, K. (2014). Tsunami vulnerability 

assessment mapping for the west coast of Peninsular Malaysia using a geographical 

information system (GIS). IOP Conference Series: Earth and Environmental Science, 18, 

012047. 

Nakhapakorn, K., Giang, P. Q., Ussawarujikulchai, A., Tantrakarnapa, K., Jirakajohnkool, S., 

Weerasiri, T., Srichan, N., Maneekul, T., & PhramahaTawee, P. (2022). Geospatial 

Technology for Estimating the Physical Vulnerability of Building Structures to Natural 

Hazards. In V. P. Singh., S. Yadav., K. K. Yadav., G. A. Corzo Perez., F. Muñoz-Arriola. 

& R. N. Yadava (Eds.), Application of Remote Sensing and GIS in Natural Resources and 

Built Infrastructure Management. Springer. 

Nirandjan, S., Koks, E. E., Ye, M., Pant, R., Ginkel, K. C. H. Van, Jeroen, C. J., Aerts, H., & Ward, 

P. J. (2024). Review article: Physical vulnerability database for critical infrastructure 

multi-hazard risk assessments – A systematic review and data collection. Natural 

Hazards and Earth System Sciences, 24(12), 4341-4368. 

Primack, R. B., Ashton, P. S., Chai, P., Lee, H. S., & Ashton, P. S. (1985). Growth rates and 

population structure of Moraceae Trees in Sarawak , East Malaysia. Ecology, 66(2), 577–

588. 

Rosmadi, H. S., Ahmed, M. F., Mokhtar, M. Bin, & Lim, C. K. (2023). Reviewing Challenges of 

Flood Risk Management in Malaysia. Water, 15(13), 2390. 

https://doi.org/10.17576/geo-2025-2103-03


Geografia-Malaysian Journal of Society and Space 21 issue 3 (39-60)  

© 2025, e-ISSN 2682-7727  https://doi.org/10.17576/geo-2025-2103-03                 60 

 

 

Saaty. (1987). The analytic hierarchy process-what and how it is used. Mathematical Modelling, 

9(3-5), 161–176. 

Sambah, A. B., Miura, F., Guntur, & Fuad. (2018). Spatial multi criteria approach for tsunami risk 

assessment. IOP Conference Series: Earth and Environmental Science, 162, 012019. 

Sauti, N. S., Daud, M. E., Kaamin, M., & Remali, N. (2021). Geospatial technology in potential 

analysis and mapping of tsunami risk at West Coast Peninsular Malaysia. Sains 

Malaysiana, 50(4), 929–943.  

Schmidt, J. (2023). Mitigating risk of failure in information technology projects: Causes and 

mechanisms. Project Leadership and Society, 4, 100097.  

Skoufias, E., Strobl, E., & Breivik Tveit, T. (2020). Flood and Tsunami damage indices based on 

remotely sensed data: An application to Indonesia. Natural Hazards Review, 21(4),  

04020042. 

Spalding, M., McIvor, A., Tonneijck, F., Tol, S., & Eijk, P. van. (2014). Mangroves for coastal 

defence. Wetlands International and The Nature Conservancy. 

Sumaryono. (2010). Assessing building vulnerability to tsunami hazard Using integrative remote 

sensing and gis approaches [Doctoral dissertation, Universität München]. 

Syafiq, M., & Azri, S. (2023). A review on the GIS usage in spatio-temporal risk assessment in 

asset management. IOP Conference Series: Earth and Environmental Science, 1274, 

012005. 

Usman Kaoje, I., Abdul Rahman, M. Z., Tam, T. H., Mohd Salleh, M. R., Idris, N. H. B., & Omar, 

A. H. (2021). An indicator-based approach for micro-scale assessment of physical flood 

vulnerability of individual buildings. International Journal of Built Environment and 

Sustainability, 8(2), 23–33.  

Williams, J. H., Paulik, R., Aránguiz, R., & Wild, A. (2024). Vulnerability of physical 

infrastructure network components to damage from the 2015 Illapel Tsunami, Coquimbo, 

Chile. Pure and Applied Geophysics, 181, 2421–2445.  

Xhafaj, E., Hassan, H. M., Scaini, C., & Peresan, A. (2024). Simulation of large plausible tsunami 

scenarios associated with the 2019 Durres (Albania) earthquake source and adjacent 

seismogenic zones. Mediterranean Geoscience Reviews, 6(3), 197–217.  

 

https://doi.org/10.17576/geo-2025-2103-03

