The Potential of Biosensor as an Early Warning Tool for Disaster Risk Reduction at Regional Level (Potensi Biosensor sebagai Sebuah Alat Amaran Awal bagi Pengurangan Risiko Bencana di Peringkat Wilayah)
Abstract
ABSTRACT: Recently, there is an increasing rate of environmental pollution cases reported, and that is closely related to technological hazard. Environmental monitoring (EM) is an approach to detect environmental risk before it develops into a disaster. Disaster Risk Reduction (DRR) is an important concept in reducing the impacts of hazards and disasters to social, economy and environment, especially at a regional level. Biosensors have been developed to detect pollutants and hazardous chemicals that are frequently and potentially found in the environment as a result of anthropogenic activity and as part of the natural phenomena. Efforts are focus in developing biosensors that are applicable in EM, some suggested biosensors could replace the conventional chemical analytical methods, but not all of them are practical. To evaluate the feasibility of biosensors in assisting EM in DRR, an analysis of articles published on biosensors in related field was carried out. Based on the evaluation, we concluded five major aspects to be considered when biosensors are to be applied as an early warning system tool in DRR at regional level, namely complexity of real sample, need of continuous environmental monitoring data, reproducibility of data, on-site testing and roles in risk characterization. This paper will help in the assessment of the applicability of biosensor in EM and as part in the DRR, and also as a guide to designing biosensor for EM purposes.
Keywords: Biosensor; early warning tool; disaster; environment
ABSTRAK: Baru-baru ini, terdapat kadar peningkatan jumlah kes-kes pencemaran alam sekitar yang dilaporkan, dan itu adalah berkait rapat dengan bahaya teknologi. Pemantauan alam sekitar (EM) adalah satu pendekatan untuk mengesan risiko alam sekitar sebelum ia berkembang menjadi bencana. Pengurangan Risiko Bencana (DRR) adalah satu konsep yang penting dalam mengurangkan kesan bahaya dan bencana sosial, ekonomi dan alam sekitar, terutamanya di peringkat serantau. Biosensor telah dibangunkan untuk mengesan pencemaran dan bahan kimia berbahaya yang sering dan berpotensi dijumpai di dalam alam sekitar akibat daripada aktiviti antropogenik dan sebagai sebahagian daripada fenomena semula jadi. Usaha dengan memfokuskan kepada pembangunan biosensor yang boleh diguna pakai di EM, beberapa biosensor yang disyorkan boleh menggantikan kaedah konvensional analisis kimia, tetapi tidak semua daripada mereka adalah praktikal. Untuk menilai kemungkinan biosensor dalam membantu EM dalam DRR, analisis artikel yang disiarkan dalam biosensor dalam bidang berkaitan telah dijalankan. Berdasarkan penilaian, kita membuat kesimpulan lima aspek utama yang perlu dipertimbangkan apabila biosensor digunakan sebagai alat dalam sistem amaran awal dalam DRR di peringkat serantau iaitu kerumitan sampel sebenar, keperluan data pemantauan persekitaran yang berterusan, kebolehulangan data, pada- ujian tapak dan peranan dalam pencirian risiko. Kertas kerja ini akan membantu dalam penilaian kesesuaian biosensor dalam EM dan sebagai sebahagian dalam DRR, dan juga sebagai panduan untuk mereka bentuk biosensor untuk tujuan EM.
Kata kunci: Biosensor; alat amaran awal; bencana; alam sekitar
Full Text:
PDFReferences
Benecke, G., Falke, W. & Schmidit, C. 1982. Use of algal fluorescence for an automated biological monitoring system. Bulletin of Environmental Contamination and Toxicology 28: 385-395.
Butcher, D.J. & Sneddon, J. 1998. A Practical Guide to Graphite Furnace Atomic Absorption Spectrometry (Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications). 1st edition, Wiley-Interscience.
Cairns, J., Jr. and Mount, D.I. 1990. Aquatic toxicology. Environ. Sci. Technol. 24(2):154-161
Clark, L.C.Jr. & Lyons, C. 1962. The determination of carbon dioxide in blood serum. Ann. N.Y. Acad. Sci 102: 29-45.
de Las Heras, A., Carreno, C.A. & de Lorenzo, V. 2008. Stable implantation of orthogonal sensor circuits in Gramnegative bacteria for environmental release. Environmental Microbiology 10: 3305–3316.
de Las Heras, A., Carreno, C.A., Martinez-Garcia, E., & de Lorenzo, V. 2010. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiology Reviews 34: 842–865.
EPA. 2012. Human Health Risk Assessment. US Environmental Protection Agency, Washington, DC. Retrieved on: 8th Oct 2013. http://www.epa.gov/risk_assessment/health-risk.htm.
EPA. 2013. EPA Risk Assessment Glossary. US Environmental Protection Agency, Washington, DC. Retrieved on: 24th September 2013. http://www.epa.gov/risk_assessment/glossary.htm.
Grieshaber, D., MacKenzie, R., Vörös, J. & Reimhult, E. 2008. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors 8: 1400-1458.
Gu, M.B. & Choi, S.H. 2001. Monitoring and classification of toxicity using recombinant bioluminescent bacteria. Water Science and Technology 43: 147-154.0
Holler, F.J., Skoog, D.A. & West, D.M. 1996. Fundamentals of Analytical Chemistry. Philadelphia: Saunders College Publishing, Philadelphia.
Koyun, A., Ahlatcıoğlu, E. & Kocaİpek, Y. 2012. Biosensors and Their Principles, A Roadmap of Biomedical Engineers and Milestones, edited by Prof. Sadik Kara. InTech. http://www.intechopen.com/books/a-roadmap-of-biomedicalengineers-and milestones/biosensor-andtheir-principles
Liu, G. & Lin, Y. 2005 Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem 77: 5894-5901.
Liu, J. & Mattiasson, B. 2002. Microbial BOD sensors for wastewater analysis. Water Res. 36: 3786.
Munkittrick, K.R. & McCarty L.S. 1995. An integrated approach to aquatic ecosystem health: top-down, bottomup or middle-out? Journal - Aquatic Ecosystem Health and Management 4: 77–90.
Munns, W.R. 2002. Axes of extrapolation in risk assessment. Hum. Ecol. Risk Assess 8:19-29.
PSP. 1990. Recommended protocols for measuring conventional water quality variables and metals in fresh water of the puget sound region, Puget Sound Assessment and Monitoring Program (PSAMP). http://www.psparchives.com/publications/our_work/science/protocals_guidelines/freshwater.pdf. Puget Sound Partnership.
Sadana, A. 2006. Sol-gel Biosensors Applications in Binding and Dissociation Kinetics for Different Biosensor Applications Using Fractals, edited by Sadana, A . Amsterdam: Elsevier.
Schmidt, M. & Pei, L. 2011. Synthetic Toxicology: Where Engineering Meets Biology and Toxicology. Toxicological Sciences 120(1): 204–224.
Talbot, J. & Weiss, A. 1994. Laboratory methods for ICP-MS analysis of trace metals in precipitation. Vol. 3 Champaign, IL.
Thevenot, D.R., Toth, K., Durst, R.A. & Wilson, G.S. 1999. Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry 7: 2333-2348.
UNISDR. 2004. Living with Risk: A Global Review of Disaster Reduction Initiatives. United Nations Office for Disaster Risk Reduction.
UNISDR. 2009. Terminology on disaster risk reduction. The United Nations Office for Disaster Risk Reduction. United Nations Office for Disaster Risk Reduction.
UNISDR. 2011. GA debate stresses need to invest in planning, prevention. Theme: Civil Society/NGOs, Media, Publicprivate Partnerships, Governance, Countries: United States of America, Regions: Africa, Americas, Europe, Asia, Oceania. United Nations Office for Disaster Risk Reduction.
Van der Schalie, W.H., Shedd, T.R., Knechtges, P.L. & Widder, M.W. 2001. Using higher organisms in biological early warning systems for real-time toxicity detection. Biosensors and Bioelectronics 16: 457–465.
Wisner, B., Blaikie, P., Cannon, T. & Davis, I. 2003. At Risk: natural hazards, people’s vulnerability and disasters. Second edition. Routledge: London.
Refbacks
- There are currently no refbacks.
ISSN 2289-1706 | e-ISSN : 2289-4268
Institut Alam dan Tamadun Melayu (ATMA)
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan
MALAYSIA
© Copyright UKM Press, Universiti Kebangsaan Malaysia