Rainwater Harvesting in Universities: A Systematic Review of Applications and Benefits
Abstract
Rainwater harvesting system (RWHS) is one of the Best Management Practices (BMP) that provides alternative water resources and has emerged as a sustainable solution to address diverse water management challenges. This study systematically reviews the application of RWHS as an alternative water resource in universities, guided by two objectives: to identify the types of RWHS applied and to discuss their importance in supporting sustainable water management. The review followed five methodological stages: review protocol selection, research question development, systematic database searching (Web of Science and Scopus), quality appraisal, and data extraction and analysis. From 987 initial records, 13 articles were selected, revealing five RWHS types: rooftop, surface runoff, small-scale, wind-driven, and permeable pavement systems. Rooftop RWHS was the most applied and cost-effective, while surface and pavement systems were least implemented but offered dual benefits of runoff reduction and groundwater recharge. The review identifies several research gaps, including the lack of studies on long-term system performance, governance, and integration of RWHS within university sustainability frameworks. RWHS provides environmental benefits through water conservation, flood mitigation, and groundwater recharge, alongside economic advantages such as reduced utility costs and operational savings. Future research should conduct comparative and multi-regional analyses, assess innovative RWHS designs, and evaluate institutional and policy frameworks to strengthen the integration of RWHS into higher education sustainability initiatives.
References
Abuelfutouh, N. A. K., Jami, M. S., Abdurahman, N. H., Fuad, N. I. M. (2020). Rainwater harvesting quality assessment and evaluation: IIUM case study. IIUM Engineering Journal, 21(1), 12-22. https://doi.org/10.31436/iiumej.v21i1.1139
Afifi, M., Stryhn, H., & Sanchez, J. (2023). Data extraction and comparison for complex systematic reviews: A step-by-step guideline and an implementation example using open-source software. Systematic Reviews, 12, Article 226. https://doi.org/10.1186/s13643-023-02322-1
Ahmed, A., Valyrakis, M., Ghumman, A. R., Arshad, M., Pasha, G. A., Farooq, R., & Janjua, S. (2022). Assessing the rainfall water harvesting potential using Geographical Information Systems (GIS). CivilEng, 3(4), 895-908. https://doi.org/10.3390/civileng3040051
Ali, N. B., & Usman, M. (2019). A critical appraisal tool for systematic literature reviews in software engineering. Information and Software Technology, 112, 48-50. https://doi.org/10.1016/j.infsof.2019.04.006
Amos, C. C., Rahman, A., & Gathenya, J. M. (2016). Economic analysis and feasibility of rainwater harvesting systems in urban and peri-urban environments: A review of the global situation with a special focus on Australia and Kenya. Water, 8(4), Article 149. https://doi.org/10.3390/w8040149
Anchan, S. S., & Prasad, H. C. S. (2021). Feasibility of roof top rainwater harvesting potential - A case study of South Indian University. Cleaner Engineering and Technology, 4, Article 100206. https://doi.org/10.1016/j.clet.2021.100206
Aregarot, P., Kubaha, K., & Chiarakorn, S. (2024). A study of sustainability concepts for developing green universities in Thailand. Sustainability, 16(7), Article 2892. https://doi.org/10.3390/su16072892
Augustine, E. E., & Hanafiah, M. M. (2019). Awareness level of water resource conservation of university students. Water Conservation and Management, 3(2), 18-21. https://doi.org/10.26480/wcm.02.2019.18.21
Azmi, E., Rose, R. A. C., Awang, A., & Abas, A. (2023). Innovative and competitive: A systematic literature review on new tourism destinations and products for tourism supply. Sustainability, 15(2), Article 1187. https://doi.org/10.3390/su15021187
Azmi, W. N. A. W. N., Wahid, N. H. A., Azman, S. M. S., & Jayus, R. (2024). Integrating sustainability into curricula: A systematic review of education for sustainable development. E-Bangi: Journal of Social Sciences and Humanities, 21(4), 103-119. https://doi.org/10.17576/ebangi.2024.2104.09
Bateni, N., Fathil, N. S. M., Bustami, R. A., Lai, S. H., Mannan, M. A., & Mah, D. Y. S. (2022). Environmental assessment of stormpav green pavement for stormwater management. Journal of Sustainability Science and Management, 17(6), 182-192. http://doi.org/10.46754/jssm.2022.06.014
Bouzidi, A. E., Anouar, A., & Bouzziri, M. (2024). Management and valuation of rainwater by alternative techniques, case of the University of Settat, in Morocco. Water Cycle, 5, 109-120. https://doi.org/10.1016/j.watcyc.2024.03.001
Cardoso, R. N. C., Blanco, C. J. C., & Duarte, J. M. (2020). Technical and financial feasibility of rainwater harvesting systems in public buildings in Amazon, Brazil. Journal of Cleaner Production, 260, Article 121054. https://doi.org/10.1016/j.jclepro.2020.121054
Che-Ani, A. I., Shaari, A., Zain, M. F. M., & Tahir, M. M. (2009). Rainwater harvesting as an alternative water supply in the future. European Journal of Scientific Research, 34(1), 132-140.
Da Silva, M. B. M., De Paiva Brandão, I. A., & Ribeiro, M. M. R. (2022). Feasibility, seasonality and reliability of rainwater harvesting in buildings of a university in Campina Grande, Paraíba. Brazilian Journal of Water Resources, 27, Article e17. https://doi.org/10.1590/2318-0331.272220210127
Dake, C., Shengyi, Q., & Yuming, S. U. (2021). Enhancing rainwater harvesting through pervious pavement system based on the principle of surface free energy. Civil Engineering and Urban Planning: An International Journal, 8(3), 11-18. https://www.airccse.com/civej/papers/8321civej02.pdf
Dawodu, A., Dai, H., Zou, T., Zhou, H., Lian, W., Oladejo, W., & Osebor, F. (2022). Campus sustainability research: Indicators and dimensions to consider for the design and assessment of a sustainable campus. Heliyon, 8(12), Article e11864. https://doi.org/10.1016/j.heliyon.2022.e11864
Domingos, J. M. F., Marques, D. G., Campos, V., & Nolasco, M. A. (2024). Analysis of the water indicators in the UI Greenmetric applied to environmental performance in a university in Brazil. Sustainability, 16(20), Article 9014. https://doi.org/10.3390/su16209014
Filho, J. V., Scortegagna, A., de Sousa Dias Vieira, A. P., Jaskowiak, P. A. (2024). Machine learning for water demand forecasting: Case study in a Brazilian coastal city. Water Practice & Technology, 19(5), 1586-1602. https://doi.org/10.2166/wpt.2024.096
Garg, V., Bansal, A. K., & Dubey, M. K. (2022). Design of rain water harvesting structure for engineering block. Ecological Engineering & Environmental Technology, 23(1), 261–266. https://doi.org/10.12912/27197050/143383
Goh, S. F., Che-Ani, A. I., Shaari, N., Mohd-Zain, M.F., & Surat, M. (2008). Traditional rainwater system to modern usage: A practical approach. 2nd International Conference on Built Environment in Developing Countries, Pulau Pinang, 576-587. http://eprints.usm.my/id/eprint/34460
Goh, Y. C., & Ideris, M. (2021). Tangki NAHRIM 2.0: An R-based water balance model for rainwater harvesting tank sizing application. Water Practice & Technology, 16(1), 182-195. https://doi.org/10.2166/wpt.2020.106
Hosseini, M. S., Jahanshahlou, F., Akbarzadeh, M. A., Zarei, M., & Vaez-Gharamaleki, Y. (2024). Formulating research questions for evidence-based studies. Journal of Medicine, Surgery, and Public Health, 2, Article 100046. https://doi.org/10.1016/j.glmedi.2023.100046
Hunt, D. V. L., & Shahab, Z. (2021). Sustainable water use practices: understanding and awareness of masters level students. Sustainability, 13(19), Article 10499. https://doi.org/10.3390/su131910499
Institute for Educational Research and Publication. (2022, April 28). Scopus vs Web of science journal; Which one is better. Institute for Educational Research and Publication. https://www.iferp.in/blog/2022/04/28/scopus-vs-web-of-science-journal-which-one-is-better
Jalil, R. A., Sakke, N., & Jafar, A. (2024). Penggunaan, cabaran, dan hala tuju sistem penuaian hujan (SPAH): Satu penelitian awal. E-Bangi: Journal of Social Sciences and Humanities, 12(4), 164-175. https://doi.org/10.17576/ebangi.2024.2104.14
Jian, Z., Kumar, M., & Werner, D. (2021). Real-world sustainability analysis of an innovative decentralized water system with rainwater harvesting and wastewater reclamation. Journal of Environmental Management, 280, Article 111639. https://doi.org/10.1016/j.jenvman.2020.111639
Kapli, F. W. A., Azis, F. A., Suhaimi, H., Shamsuddin, N., & Abas, P. E. (2023). Feasibility studies of rainwater harvesting system for ablution purposes. Water, 15(9), Article 1686. https://doi.org/10.3390/w15091686
Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide No. 131. Medical Teacher, 42(8), 846–854. https://doi.org/10.1080/0142159X.2020.1755030
Kolaski, K., Logan, L. R., & Ioannidis, J. P. A. (2023). Guidance to best tools and practices for systematic reviews. Systematic Reviews, 12(96). https://doi.org/10.1186/s13643-023-02255-9
Kolavani, N. J., & Kolavani, N. J. (2020). Technical feasibility analysis of rainwater harvesting system implementation for domestic use. Sustainable Cities and Society, 62, Article 102340. https://doi.org/10.1016/j.scs.2020.102340
Kumar, V., Mukwana, K. C., Jatoi, A. R., Hassan, M., Jakhrani, A. Q., Siyal, A. A., Zaman, K. U., & Kumar, L. (2022). GIS-based analysis of a rainwater harvesting system in the multipurpose hall of Quaid-e-Awam University of Engineering, Science, and Technology. Engineering, Technology & Applied Science Research, 12(4), 8837-8842. https://doi.org/10.48084/etasr.4995
Lani, N. H. M., Yusop, Z., & Syafiuddin, A. (2018). A review of rainwater harvesting in Malaysia: Prospects and challenges. Water, 10(4), Article 506. https://doi.org/10.3390/w10040506
Mostaffa, M. F., Musa, S. M. S., Zainal, R., Kasim, N., Noh, H. M., & Yassin, A. M. (2021). E-SPAH: Aesthetic innovation in UTHM’s small-scale rainwater harvesting system. International Journal of Integrated Engineering, 13(5), 239-246. https://doi.org/10.30880/ijie.2021.13.05.025
Muchadeyi, M. T., Hernandez-Villafuerte, K., Di Tanna, G. L., Eckford, R. D., Feng, Y., Meregaglia, M., Peasgood, T., Petrou, S., Ubels, J., & Schlander, M. (2024). Quality appraisal in systematic literature reviews of studies eliciting health state utility values: Conceptual considerations. PharmacoEconomics, 42, 767-782. https://doi.org/10.1007/s40273-024-01365-z
Muhiddin, A. A. M., Isa, H. M., Sakip, S. R. M., Nor, O. M., & Sedhu, D. S. (2023). Green campus implementation in the Malaysian public universities: Challenges and solutions. Planning Malaysia Journal, 21(1), 274-298. https://doi.org/10.21837/pm.v21i25.1239
Musa, S. M. S., Mostaffa, M. F., Manap, N., Yassin, A. M., & Zainal, R. (2022). Small scale rainwater harvesting design for external usage. Environment and Ecology Research, 10(2), 267-274. https://doi.org/10.13189/eer.2022.100216
Naeem, M., Ozuem, W., Howell, K., & Ranfagni, S. (2023). A step-by-step process of thematic analysis to develop a conceptual model in qualitative research. International Journal of Qualitative Methods, 22. https://doi.org/10.1177/16094069231205789
Oberascher, M., Kinzel, C., Kastlunger, U., Schöpf, M., Grimm, K., Plaiasu, D., Rauch, W., & Sitzenfrei, R. (2022). Smart water campus – a testbed for smart water applications. Water Science & Technology, 86(11), 2834-2847. https://doi.org/10.2166/wst.2022.369
Raimondi, A., Quinn, R., Abhijith, G. R., Becciu, G., & Ostfeld, A. (2023). Rainwater harvesting and treatment: State of the art and perspectives. Water, 15(8), Article 1518. https://doi.org/10.3390/w15081518
Rainharvesting Systems. (2023). Types of rainwater harvesting systems. Rainharvesting Systems. https://rainharvesting.co.uk/types-of-rainwater-harvesting-systems/
Richards, S., Rao, L., Connelly, S., Raj, A., Raveendran, L., Shirin, S., Jamwal, P., & Helliwell, R. (2021). Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment. Journal of Environmental Management, 286, Article 112223. https://doi.org/10.1016/j.jenvman.2021.112223
Richardson, J. (2024, September 4). History of rainwater harvesting. The Renewable Energy Hub. https://www.renewableenergyhub.co.uk/main/rainwater-harvesting-information/history-of-rainwater-harvesting
Samzadeh, M., Din, N. C., Abdullah, Z., Mahyuddin, N., & Ismail, M. A. (2021). Feasibility of vertical rainwater harvesting via in-situ measurement of wind-driven rain loads on building facades in a tropical climate. International Journal of Built Environment and Sustainability, 8(3), 27-45. https://doi.org/10.11113/ijbes.v8.n3.736
Scopus. (n.d.). Start exploring. Retrieved June 9, 2024, from https://www.scopus.com/pages/home
Shaffril, H. A. M. (2020). Metodologi asas systematic literature review. Hayrol Azril Mohamed Shaffril.
Soni, P., Medhi, H., Sagar, A., Garg, P., Singh, P., & Karna, U. (2022). Runoff estimation using digital image processing for residential areas. Aqua: Water Infrastructure, Ecosystems and Society, 71(8), 938-948. https://doi.org/10.2166/aqua.2022.070
Sultana, S. (n.d.). Advantages and disadvantages of rainwater harvesting. Civil Engineering. https://civiltoday.com/water-resource-engineering/irrigation/412-advantages-and-disadvantages-of-rainwater-harvesting
Suni, S., Firdaous, M. H., Zailani, F. F., Gödeke, S., Mohd Raffi, R., & Abas, P. E. (2025). Urban water management and public acceptance of rainwater harvesting systems: Insights from young and educated respondents in Muslim communities. Sustainability, 17(7), Article 3046. https://doi.org/10.3390/su17073046
Teston, A., Piccinini Scolaro, T., Kuntz Maykot, J., & Ghisi, E. (2022). Comprehensive environmental assessment of rainwater harvesting systems: A literature review. Water, 14(17), Article 2716. https://doi.org/10.3390/w14172716
Trifu, A., Smîdu, E., Badea, D. O., Bulboacă, E., & Haralambie, V. (2022). Applying the PRISMA method for obtaining systematic reviews of occupational safety issues in literature search. 10th International Symposium on Occupational Health and Safety, MATEC Web of Conferences, 354(00052), 1-8. https://doi.org/10.1051/matecconf/202235400052
University of South Australia. (n.d.). Systematic reviews. University of South Australia. https://guides.library.unisa.edu.au/SystematicReviews
Vaz, I. C. M., Ghisi, E., & Thives, L. P. (2021). Stormwater harvested from permeable pavements as a means to save potable water in buildings. Water, 13(14), Article 1896. https://doi.org/10.3390/w13141896
Web of Science. (n.d.). Your trusted path to discovery. Retrieved June 9, 2024, from https://www.webofscience.com/wos/woscc/smart-search
Xu W. D., Fletcher, T. D., Burns, M. J., & Cherqui, B. F. (2020). Real time control of rainwater harvesting systems: The benefits of increasing rainfall forecast window. Water Resources Research, 56(9), Article e2020WR027856. https://doi.org/10.1029/2020WR027856
Yoo, C., Cho, E., Lee, M., & Kim, S. (2022). Observation experiment of wind-driven rain harvesting from a building wall. Water, 14(4), Article 603. https://doi.org/10.3390/w14040603
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.17576/ebangi.2025.2204.42
Refbacks
- There are currently no refbacks.
-
_________________________________________________
eISSN 1823-884x
Faculty of Social Sciences & Humanities
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan
MALAYSIA
© Copyright UKM Press, Universiti Kebangsaan Malaysia