DISTRIBUTION MODELING OF THE Lamproptera SPECIES (PAPILIONIDAE: LEPTOCIRCINI) IN BORNEO

NUR AZIZUHAMIZAH IDRIS, NUHA LOLING OTHMAN, FATIMAH ABANG

Abstract


Conservation planning and ecological research aimed to understand patterns of biological diversity have focused on determining threatened and rare species. Species distribution modelling had been increasingly used to understand the rare and endangered species distribution and their relationship with environmental factors. The aim of this study was to predict the potential distribution of Lamproptera butterflies across Borneo, and determine the conservation status and potential threats to their survival. Subsequent to this, species occurrence data obtained from voucher specimens of Lamproptera butterflies deposited in Universiti Malaysia Sarawak Insects Reference Collection (UIRC), Research Development and Innovation Division (RDID) of the Sarawak Forest Department, and Centre of Insects Systematics (CIS), Universiti Kebangsaan Malaysia, an extensive literature reviews and field sampling were documented. The occurrence data were later analyzed using Maxent software to obtain the potential distribution of the Lamproptera species. Majority of the high suitability area for the Lamproptera butterflies lie in the northwest part of Borneo. Environmental variables that affects the species distributions are temperature of annual range (Bio7), precipitation of driest month (Bio14), temperature seasonality (Bio4) and precipitation of wettest quarter (Bio16). Increasing knowledge on the status and distribution range regarding Lamproptera species will provided more understanding on their population dynamics and increase the effectiveness of their conservation planning.


Full Text:

PDF

References


Abang, F., Noor, S., Hazali, R. & Dieng, H. 2016. First record and occurrence of Acraea terpsicore (Linnaeus, 1758) (Lepidoptera: Nymphalidae) in Malaysian Borneo. Serangga 21(2): 21-31.

Acharya, B. K. & Chettri, B. 2012. Effect of climate change on birds, herpetofauna and butterflies in Sikkim Himalaya: A preliminary investigation. In Arawatia, M. L. & Tambe, S. (eds.). Climate Change in Sikkim: Patterns, Impacts and Initiatives, pp. 141–160. Gangtok: IPR Department, Government of Sikkim.

Anderson, R. P., Lew, D. & Peterson, A. T. 2003. Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecological Modelling 162: 211–232.

Baldwin, R. A. 2009. Use of maximum entropy modeling in wildlife research. Entropy 11: 854-866.

Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275: 73–77.

Brehm, G., Colwell, R. K. & Kluge, J. 2007. The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Global Ecology and Biogeography 16: 205–219.

Brown, J. H., Stevens, G. C. & Kaufman, D. M. 1996. The geographic range: Size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27: 597–623.

Buechling, A., & Tobalske, C. 2011. Predictive habitat modeling of rare plant species in Pacific Northwest forests. Western Journal of Applied Forestry 26(2): 71-81.

Coope, G. R. 1978. Constancy of insect species versus inconstancy of Quaternary environments. In Mound, L. A. & Waloff, N. (eds.). Diversity of Insect Faunas, pp. 176-187. Oxford: Blackwell Scientific Publications.

Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A. et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

Ferrer-Sánchez, Y. & Rodríguez-Estrella, R. 2015. Man-made environments relationships with island raptors: Endemics do not cope with habitat changes, the case of the island of Cuba. Biodiversity and Conservation 24: 407–425.

Foin, T. C., Riley, S. P. D., Pawley, A. L. D., Ayres, R., Carlsen, T. M., Hodum, P. J. & Switzer, P. V. 1998. Improving recovery planning for threatened and endangered species. BioScience 48: 177–184.

Gaston, K. J. 2003. The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.

Guisan, A. & Zimmermann, N. E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186.

Graham, C. H., Ron, S. R., Santos, J. C. Schneider, C. J. & Moritz, C. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58: 1781–1793.

Hernandez, P. A., Graham, C. H., Master, L. L. & Albert D. L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773-785.

Hoegh-Guldberg, O., Hughes, L., McIntyre, S., Lindenmayer, D. B., Parmesan, C., Possingham, H. P. & Thomas, C. D. 2008. Assisted colonization and rapid climate change. Science 321: 345–346.

Hoskins. A. 2012. Learn About Butterflies: the complete guide to the world of butterflies and moths.

http://www.learnaboutbutterflies.com/World%20Census.htm [16July 2017].

Jackson, S. T. & Overpeck, J. T. 2000. Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology 26: 194–220.

Kharouba, H. M., Paquette, S. R., Kerr, J. T. & Vellend, M. 2013. Predicting the sensitivity of butterfly phenology to temperature over the past century. Global Change Biology 20: 504-514.

Larsen, T. B. 2004. Butterflies of Bangladesh- An Annotated Checklist. Dhaka, Bangladesh: IUCN Bangladesh Country Office.

Manel, S., Williams, H. C. & Ormerod. S. J. 2001. Evaluating presence-absence models in ecology: The need to account for prevalence. Journal of Applied Ecology 38: 921–931.

Navarro-Cerrillo, R. M., Hernandez-Bermejo, J. E. & Hernandez-Clemente, R. 2011. Evaluating models to assess the distribution of Buxus balearica in southern Spain. Applied Vegetation Science 14: 256-267.

Nazeri, M., Jusoff, K., Madani, N., Mahmud, A. R., Bahman, A. R. & Kumar, L. 2012. Predictive modeling and mapping of Malayan sun bear (Helarctos malayanus) distribution using maximum entropy. Public Library of Sciences One 7(10): e48104.

Newbold, T. 2010. The value of species distribution models as a tool for conservation and ecology in Egypt and Britain. Ph.D. Thesis, University of Nottingham.

Otis, G. W., Locke, B., Mckenzie, N. G., Cheung, D., MacLeod, E., Careless, P. & Kwoon, A. 2006. Local enhancement in mud-puddling swallowtail butterflies (Battus philenor and Papilio glaucus). Journal of Insect Behavior 19(6): 685-698.

Otsuka, K. 2001. A Field Guide to Butterflies of Borneo in South East Asia. Kota Kinabalu, Sabah: Hornbill Book.

Papeş, M. & Gaubert, P. 2007. Modelling ecological niches from low numbers of occurences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents. Diversity and Distributions 13: 890-902.

Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399: 579–583.

Pellet, J. 2007. Seasonal variation in detectability of butterflies surveyed with Pollard walks. Journal of Insect Conservation 12(2): 155-162.

Peterson, A. T. 2001. Predicting species' geographic distributions based on ecological niche modeling. The Condor 103: 599-605.

Peterson, A. T., Soberón, J., Anderson, R. P., Pearson, R. G., Martínez-Meyer, E., Nakamura, M. & Araújo, M. B. 2012. Ecological Niches and Geographic Distributions: A Modeling Perspective. Princeton: Princeton University Press.

Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J. & Ferrier, S. 2009. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications 19: 181–197.

Pollard, E. & Yates T. J. 1993. Monitoring Butterflies for Ecology and Conservation. London: Chapman and Hall.

Pollard, E. 1988. Temperature, rainfall and butterfly numbers. Journal of Applied Ecology 25: 819–828.

Pulliam, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3: 349–361.

Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. 2006. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecological Letter 9: 1136–1145.

Soberón, J. & Peterson, A. T. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2: 1–10.

Thacker, J. I., Thieme, T. & Dixon, A. F. G. 1997. Forecasting of periodic fluctuations in annual abundance of the bean aphid: the role of density dependence and weather. Journal of Applied Entomology 121: 137-145.

Thompson, M. N. 2016. The Effect of Climate on Population Dynamics of Butterfly Species across Southeastern Virginia. College of William & Mary: W & M Publish.

Tollefson, J. 2016. Global warming already driving increases in rainfall extremes. https://www.nature.com/news/global-warming-already-driving-increases-in-rainfall-extremes-1.19508 [19 March 2018].

Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. 2007. A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions 13: 397–405.

Warren, D. L. & Seifert, S. N. 2011. Ecological niche modelling in MaxEnt: The importance of model complexity and the performance of model selection criteria. Ecological Applications 21: 335–342.

Wilson, R. J., Gutierrez, D., Gutierrez, J. & Monserrat, V. J. 2007. An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology 13: 1873–1887.

White, P. & Kerr, J. T. 2006. Contrasting spatial and temporal global change impacts on butterfly species richness during the 20th century. Ecography 29: 908–918.

Zografou, K., Kati, V., Grill, A., Wilson, R. J., Tzirkalli, E., Pamperos, L. N. & Halley, J. M. 2014. Signals of climatic change in butterfly communities in a Mediterranean protected area. Public Library of Sciences One 9: e87245.


Refbacks

  • There are currently no refbacks.