PENGGUNAAN KAEDAH PENYEBARAN-AUTO SEPARA LAPANGAN DAN SIMULASI LAPANGAN TERHADAP VEKTOR DEMAM DENGGI Aedes aegypti (LINNAEUS) (DIPTERA: CULICIDAE)
Abstract
Demam denggi merupakan penyakit bawaan nyamuk yang menunjukkan kesan signifikan terhadap manusia serta meningkatkan kebimbangan kesihatan awam. Namun begitu, kawalan vektor sedia ada belum mampu mengurangkan jangkitan denggi, menunjukkan kaedah yang digunakan masih tidak mencukupi dan perlu dinilai semula. Penyebaran-auto dengan pyriproxyfen merupakan satu kaedah novel yang memanipulasi nyamuk untuk menyebarkan pyriproxyfen ke bekas pembiakan. Kaedah ini bergantung sepenuhnya kepada kelakuan langkau oviposisi nyamuk Aedes spp. semasa ingin bertelur. Kajian ini dijalankan untuk menguji potensi Mosquito Home System (MHS) dan formulasi Mosquito Home Aqua (MHAQ) sebagai stesen penyebaran-auto dalam keadaan separa-lapangan. Selain itu, impak penggunaan terhadap populasi nyamuk di lapangan turut diakses. Ujian separa lapangan telah dijalankan dalam bilik berdasarkan kepada konsep kebuk peet grady yang disimulasikan sebagai aparment bertingkat di Kuala Lumpur menggunakan sangkar besar. Ujian menunjukkan kecenderungan nyamuk Ae. aegypti liar bertelur dibekas tersembunyi (69.88%) berbanding bekas terbuka (30.12%). Tiada perbezaan yang signifikan di antara pyriproxyfen dan air seduhan rumput kering menunjukkan kebolehan menarik nyamuk ke dalam stesen. Penggunaan pyriproxyfen pada 20 dan 40 ppm menunjukkan kesan residu yang setara sehingga 90 hari berbanding 0.5 dan satu ppm. Dalam simulasi lapangan, dua penetapan lokasi kawalan dan rawatan telah ditentukan. Kaedah percubaan kawalan rawak dijalankan dengan memasang stesen penyebaran-auto di lokasi kajian dan populasi nyamuk seterusnya dipantau. Ujian dengan kepekatan 40 ppm menunjukkan penurunan dalam populasi nyamuk dan kematian larva dari sampel air yang diambil dari lokasi kajian. Selain itu, aktiviti perpindahan pyriproxyfen secara horizontal di separa lapangan dan simulasi lapangan diakses menggunakan bioasai larva WHO. Keputusan membuktikan kebolehan pyriproxyfen dipindahkan ke kawasan pembiakan baru dilokasi kajian. Kajian ini telah membuktikan potensi MHS sebagai alat penyebaran-auto yang berupaya menarik perhatian nyamuk dan seterusnya memindahkan insektisid ke bekas pembiakan yang lain. Kajian MHS pada skala yang lebih besar adalah diperlukan sebelum boleh dipertimbangkan sebagai alternatif dalam program kawalan vektor.
Full Text:
UntitledReferences
Abilio, A.P., Abudasse, G., Kampango, A., Candrinho, B., Sitoi, S., Luciano, J., Tembisse, D., Sibindy, S., Almeida, A.P.G.D., Garcia, G.A., David, M.R., Freitas, R.M.D. & Gudo, E.S. 2018. Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: Implication for assessing the risk of arbovirus outbreaks. PLoS Neglected Tropical Diseases 12(9): e0006692.
Arcos, A.N., Ferreira, F.A.S., Cunha, H.B.D. & Tadei, W.P. 2018. Characterization of artificial larval habitats of Anopheles darlingi (Diptera: Culicidae) in the Brazilian Central Amazon. Revista Brasileira de Entomologia 62(2018): 267-274.
Alphey, L., McKemey, A., Nimmo, D., Oveido, M.N., Lacroix, R., Matzen, K. & Beech, C. 2013. Genetic control of Aedes mosquitoes. Pathogens and Global Health 107(4): 170-179.
Barrera, R., Amador, M., Diaz, A., Smith, J., Munoz-Jordan, J.L. & Rosario, Y. Unusual productivity of Aedes aegypti in septic tanks and its implication for dengue control. Medical and Veterinary Entomology 22(1): 62-69.
Buckner, E.A., Williams, K.F., Marsicano, A.L., Latham, M.D. & Lesser, C.R. 2017. Evaluating the vector control trap against Aedes aegypti and Aedes albopictus under semifield conditions in Manatee Country, Florida. Journal of the American Mosquito Control Association 33(3): 193-199.
Caputo, B., Lenco, A., Cianci, D., Pombi, M., Petrarca, V., Baseggio, A., Devine, G.J. & Torre, A. 2012. The “Autodissemination” approach: A novel concept to fight Aedes albopictus in urban areas. PLoS Neglected Tropical Diseases 6(8): e1793.
Caragata, E.P., Rocha, M.N., Pereira, T.N., Mansur, S.B., Dutra, H.L. & Moreira, L.A. 2019. Pathogen blocking in Wolbachia-infected Aedes aegypti is not affected by Zika and dengue virus co-infection. PLoS Neglected Tropical Diseases 13(5): e0007443.
Chandel, K., Suman, D.S., Wang, I., Unlu, I., Wiliges, E., Williams, G.M. & Gaugler, R. 2016. Targeting a hidden enemy: pyriproxyfen autodissemination strategy for the control of the containers mosquito Aedes albopictus in cryptic habitats. PLoS Neglected Tropical Diseases 10(12): e0005235.
Chaiphongpachara, T., Sumchung, K. & Chansukh, K.K. 2018. Larvicidal and adult mosquito attractant activity of Auricularia auricula-judae mushroom extract on Aedes aegypti (L.) and Culex sitiens Wiedemann. Journal of Applied Pharmaceutical Science 8(08): 012-025.
Chen, Y.A., Lai, Y.T., Wu, K.C., Yen, T.Y., Chen, C.Y. & Tsai, K.H. 2020. Using UPLC-MS/MS to evaluate the dissemination of pyriproxyfen by Aedes mosquitoes to combat cryptic larval habitats after source reduction in Kaohsiung in Southern Taiwan. Insects 11: 251.
Chism, B.D. & Apperson, C.S. 2003. Horizontal transfer of the insect growth regulator pyriproxyfen to larval microcosms by gravid Aedes albopictus and Ochlerotatus triatusmosquito in the laboratory. Medical and Veterinary Entomology 17: 211-220.
Devine, G.J., Zamora-Perea, E., Killeen, G.F., Stancil, J.D., Clark, S.J. & Morrison, A.C. 2009. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. PNAS 106(28): 11530-11534.
Dieng, H., Saifur, R.G.M., Ahmad, A.H., Che Salmah, M.R., Aziz, A.T., Satho, T., Miake, F., Jaal, Z., Abubakar, S. & Morales, R.E. 2012. Unusual, developing sites of dengue vectors and potential epidemiological implications. Asian Pacific Journal of Tropical Biomedicine 2(3): 228-232.
Dom, N.C., Mokhtar, M.A.M. & Australia, C.T. 2018. Development and oviposition preferences of field collected Aedes albopictus based on different water characteristic. Malaysian Journal of Fundamental and Applied Sciences 15(1): 61-64.
Emidi, B., Kisinza, W.N., Mmbando, B.P., Malima, R. & Mosha, F.W. 2017. Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasites & Vectors 10: 304.
Eneh, L.K., Okal, M.N., Borg-Karlson, A.K., Fillinger, U. & Lindh, J.M. 2016. Gravid Anopheles gambiae sensu stricto avoid ovipositing in Bermuda grass infusion and its volatiles in two choice egg-count bioassays. Malaria Journal 15: 276.
Evans, B.R., Kotsakiozi, P., Costa-da-Silva, A.L., Ioshino, R.S., Garziera, L., Pedrosa, M.C., Malavasi, A., Virginio, J.F., Capurro, M.L. & Powell, J.R. 2019. Tansgenic Aedes aegypti mosquitoes transfer genes into a natural population. Scientific Reports 9:13047.
Gaugler, R., Suman, D. & Wang, Y. 2012. An autodissemination station for transfer of an insect growth regulator to mosquito oviposition sites. Medical and Veterinary Entomology 26(1): 37-45.
Invest, J.F. & Lucas, J.R. 2008. Pyriproxyfen as a mosquito larvicide. In Robinson, W.H. & Bajomi, D. (eds.), Proceedings of the Sixth International Conference on Urban Pests, pp. 239-245. OOK-Press Kft: Veszprem, Hungary.
Khemrattrakool, P., Yanola, J., Lumjuan, N. & Somboon, P. 2019. Pyriproxyfen-treated polypropylene sheets and resting boxes for controlling mosquitoes in livestock operations. Insects 10(2): 55.
Kittayapong, P., Ninphanomchai, S., Limohpasmanee, W., Chansang, C., Chansang, U. & Mongkalangoon, P. 2019. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Neglected Tropical Diseases 13(10): e0007771.
Kittayapong, P., Kaeothaisong, N.O., Ninphanomchai, S. & Limohpasmanee, W. 2018. Combined sterile insect technique and incompatible insect technique: Sex separation and quality of sterile Aedes aegypti male mosquitoes released in pilot population suppression trial in Thailand. Parasites & Vectors 11:657.
Laguna-Aguilar, M., Fernandez-Salas, I. & Rebollar-Tellez, E.A. 2013. Laboratory and semi-field evaluation of inexpensive trap prototypes for the collection of dengue vector mosquito Aedes aegypti (Diptera: Culicidae). Revista Biomedica 24(3): 92-99.
Lau, K.W., Chen, C.D., Lee, H.L., Norma-Rashid, Y. & Sofian-Azirun, M. 2015. Evaluation of insect growth regulators against field collected Aedes aegypti and Aedes albopictus (Diptera: Culicidae) from Malaysia. Journal of Medical Entomology 52(2): 199-206.
Liang, Y., Ahmad Mohiddin, M.N., Bahauddin, R., Hidayatul, F.O., Nazni, W.A., Lee, H.L. & Greenhalgh, D. 2019. Modelling the effect of a novel autodissemination trap on the spread of dengue in Shah Alam, Malaysia. Computational and Mathematical Methods in Medicine 192347: 15p.
Ling, L.S., Sulaiman, S. & Othman, H. 2013. Laboratory evaluation of temephos, grass infusion, and Piper aduncum extracts against the ovipository responses of Aedes aegypti. The Journal of Tropical Medicine and Parasitology 36(1): 15-22.
Liu, X., Baimaciwang, Yue, Y., Wu, H., Pengcuociren, Guo, Y., Cirenwangla, Ren, D., Danzenggongga., Dazhen., Yang, J., Zhaxisangmu., Li, J., Cirendeji., Sun, J., Li, J., Wang, J., Cirendunzhu. & Liu, Q. 2019. Breeding site characteristic and associated factors of Culex pipiens complex in Lhasa, Tibet, P.R. China. International Journal of Environmental Research and Public Health 16: 1407.
Lwetoijera, D., Harris, C., Kiware, S., Dongus, S., Devine, G.J., McCall, P.J. & Majambere, S. 2014. Effective autodissemination of pyriproxyfen to breeding sites by the exophilic malaria vector Anopeheles arabiensis in semi-field settings in Tanzania. Malaria Journal 13: 161.
Lwetoijera, D., Kiware, S., Okumu, F., Devine, G.J. & Majambare, S. 2019. Autodissemination of pyriproxyfen suppresses stable populations of Anopheles arabiensis under semi-controlled settings. Malaria Journal 18: 166.
Maciel-de-Freitas, R., Peres, R.C., Alves, F. & Brandolini, M.B. 2008. Mosquito traps designed to capture Aedes aegypti (Diptera: Culicidae) females: preliminary comparison of adultrap, mosquitoTRAP and backpack aspirator efficiency in a dengue-endemic are of Brazil. Memorias do Instituto Oswaldo Cruz 103(6): 602-605.
Mbare, O., Lindsay. S.W. & Fillinger, U. 2014. Pyriproxyfen for mosquito control: female sterilization or horizontal transfer to oviposition substrates by Anopheles gambiae sensu stricto and Culex quinquefasciatus. Parasites & Vectors 7: 280.
Misni, N., Othman, H. & Sulaiman, S. 2011. The effect of Piper aduncum Linn. (Family: Piperaceae) essential oil as aerosol spray against Aedes aegypti (L.) and Aedes albopictus Skuse. Tropical Biomedicine 28(2): 249-258.
Mohtar, N.S.H.M., Emelia, O., Ahmad-Firdasu, M.S., Zainol-Arifin, P. & Aishah-Hani, A. 2018. Detection of Wolbachia in wild mosquito populations from selected areas in Peninsular Malaysia by loop-mediated isothermal amplification (LAMP) technique. Tropical Biomedicine 35(2): 330-346.
Murrell, E.G., Damal, K., Lounibos, L.P. & J-uliano, S.A. 2011. Distribution of competing container mosquitoes depend on detritus types, nutrient ratios, and food availability. Annals of Entomological Socienty of Aemerica) 104(4): 688-698.
Nasir, S., Jabeen, F., Abbas, S., Nasir, I. & Debboun, M. 2017. Effect of climatic condition and water bodies on population dynamics of the dengue vector, Aedes aegypti (Diptera: Culicidae). Journal of Arthropod-Borne Diseases 11(1): 50-59.
Ningsih, F., Zakaria, I.J. & Hasmiwati. 2016. The microhabitat preferences of mosquito genus Aedes (Diptera: Culicidae) in Padang, West Sumatra, Indonesia. International Journal of Mosquito Research 3(5): 36-40.
Nor Aliza, A.R., Harvie, S., Nur Ain, M. R., Lela, S., Siti Fairouz, I., Razitasham, S. & Marlini, O. 2019. Detection of transovarial dengue viruses in Aedes albopictus from selected localities in Kuching and Samarahan divisions, Sarawak, Malaysia by reverse transcription polymerase chain reaction (RT-PCR). Serangga 24(2): 145-158.
Noor Aslinda, U.A.B., Azman, S., Lailatul-Nadhirah, A. & Khadijah, K. 2019. Resistance status of Aedes aegypti towards different insecticides in selected dengue outbreak area in Petaling district (Diptera: Culicinae). Serangga 24(2): 41-48.
Obenauer, P.J., Kaufman, P.E., Kline, D.L. & Allan, S.A. 2010. Detection and monitoring for Aedes albopictus (Diptera: Culicidae) in suburban and sylvatic habitats in North Central Florida using four sampling techniques. Environment Entomology 39(5): 1608-1616.
Ohba, S.Y., Ohashi, K., Pujiyati, E., Higa, Y., Kawada, H., Mito, N. & Takagi, M. 2013. The effect of pyriproxyfen as a “population growth regulator” against Aedes albopictus under semi-field conditions. PLoS ONE 8(7): e67045.
Ong, J., Liu, X., Rajarethinam, J., Yap, G., Ho, D. & Ng, L.C. 2019. A novel entomological index, Aedes aegypti breeding percentage, reveal the geographical spread of the dengue vector in Singapore and serve as a spatial risk indicator for dengue. Parasites & Vectors 12: 17.
Oo, S.Z.M., Thaung, S., Maung, Y.N.M., Aye, K.M., Aung, Z.Z., Thu, H.M., Thant, K.Z. & Minakawa, N. 2018. Effectiveness of a novel long-lasting pyriproxyfen larvicide (Sumilarv® 2MR) against Aedes mosquitoes in schools in Yangon, Myanmar. Parasites & Vectors 11(1): 16.
Othman, H., Nordin, S.A., Rashid, N.A., Abas, M.B.H., Hod, R. & Sahani, M. 2017. Dengue-free community approach for understanding the value and challenges of inter-agencies partnerships in an intervention programs. Internasional Journal of Community Medicine and Public Health 4(6): 1819-1826.
Ponnusamy, L., Wesson, D.M., Arellamo, C., Schal, C. & Apperson, C.S. 2010. Species composition of bacterial communities influences attraction of mosquitoes to experimental plant infusions. Microbial Ecology 59: 158-173.
Rajendran, D., Shaida, F.S. & Wan Fatma, Z.W.M. 2019. Efficacy of different parts of Tridax procumbens as a potential biolarvicide against Aedes aegypti and Aedes albopictus. Serangga 24(1): 142-150.
Rohani, A., Suzilah, I., Wan Najdah, W.M.A., Topek, O., Mustafakamal, I. & Lee, H.L. 2018. Factors determining dengue outbreak in Malaysia. PLoS One 13(2): e0193326.
Rozilawati, H., Tanaselvi, K., Nazni, WA, Mohd Masri, S., Zairi, J., Adanan, C.R. & Lee, H.L. 2015. Surveillance of Aedes albopictus Skuse breeding preference in selected dengue outbreak localities peninsular Malaysia. Tropical Biomedicine 32(1): 49-64.
Satho, T., Dieng, H., Ahmad, M.H.I., Ellias, S.B., Hassan, A.A., et al. 2015. Coffee and its waste repel gravid Aedes albopictus females and inhibit the development of their embryos. Parasites & Vectors 8: 272.
Santos, S.R.A., Santos-Melo, M.A.V., Regis, L. & Albuquerque, C.M. 2003. Field evaluation of ovitraps consociated with grass infusion and Bacillus thuringiensis var. israelensis to determine oviposition rates of Aedes aegypti. Dengue Bulletin 27: 156-162.
Seidahmed, O.M.E. & Eltahir, E.A. 2016. A sequence of flushing and drying off breeding habitats of Aedes aegypti (L.) prior to the low dengue season in Singapore. Plos Neglected Tropical Diseases 10(7): e0004842.
Seixas, G., Paul, R.E.L., Pires, B., Alves, G., Jesus, A., Silva, A.C., Devine, G.J. & Sousa, C.A. 2019. An evaluation of efficacy of the auto-dissemination technique as a tool for Aedes aegypti control in Madeira, Portugal. Parasites & Vectors 12: 202.
Silva, W.R., Silva, J.S., Ferreira, F.A.S., Rodrigues, I.A., Tadei, W.P. & Zequi, J.A.C. 2018. Oviposition of Aedes aegypti Linnaeus, 1762 and Aedes albopictus Skuse, 1894 (Diptera: Culicidae) under laboratory and field conditions using ovitraps associated to different control agents, Manaus, Amazonas, Brazil. Revista Brasileira de Entomologia 63(4): 304-310.
Smith, E.P., Orvos, D.R. & Cairns, J. 1993. Impact assessment using the before-after-control-impact (BACI) model: concerns and comments. Canadian Journal of Fisheries and Aquatic Sciences 50: 627-637.
Stewart-Oaten, A. & Murdoch, W.W. 1986. Environmental impact assessment: “Pseudoreplication” in time. Ecology 67(4): 929-940.
Sulaiman, S., Siti Hajar, A. S. & Othman, H. 2004. Residual efficacy on insect growth regulators pyriproxyfen, triflumuron and s-methoprene against Aedes aegypti (L.) in plastic containers in the field. Tropical Biomedicine 2(1): 97-100.
Suman, D.S., Wang, Y., Dong, L. & Gaugler. R. 2013. Effects of larval habitats substrate on pyriproxyfen efficacy against Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology 50(6): 1261-1266.
Swale, D.R., Li, Z., Kraft, J.Z., Healy, K., Liu, M., David, C.M., Liu, Z. & Foil, L.D. 2018. Development of an autodissemination strategy for the deployment of novel control agents targeting the common malaria mosquito, Anopheles quadrimaculatus say (Diptera: Culicidae). PLoS Neglected Tropical Diseases 12(4): e0006259.
Toonen, R.J. & Pawlik, J.R. 1994. Foundation of gregariousness. Nature 370: 511-512.
Turnipseed, R.K., Moran, P.J. & Allan, S.A. 2018. Behavioral responses of gravid Culex quinquefasciatus, Aedes aegypti, and Anopheles quadrimaculatus mosquitoes to aquatic macrophyte volatiles. Journal of Vector Ecology 43(2): 252-260.
Unlu, I., Farajollahi, A., Strickman, D. & Fonseca, D.M. 2013. Crouching tiger, hidden trouble: urban sources of Aedes albopictus (Diptera: Culicidae) refractory to source-reduction. PLoS ONE 8(10): e77999.
Unlu, I., Rochlin, I., Suman, D.S., Wang, Y., Chandel, K. & Gaugler, R. 2020. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature Asian tiger mosquito (Diptera: Culicidae) populations. Journal of Medical Entomology 57(4): 1120-1130.
Unlu, I., Suman, D.S., Wang, Y., Klinger, K., Faraji, A. & Gaugler, R. 2017. Effectiveness of autodissemination stations containing pyriproxyfen in reducing immature Aedes albopictus populations. Parasites & Vectors 10: 139.
Velo, E., Kadriaj, P., Mersini, K., Shukullari, A., Manxhari, B., Simaku, A., Hoxha, A., Caputo, B., Bolzoni, L., Rosa, R., Bino, S., Reiter, P. & Torre, A.D. 2016. Enhancement of Aedes albopictus collections by ovitrap and sticky adult trap. Parasites & Vectors 9: 223.
Wan Fatma, Z. & Aminoddin, S. 2019. Population abundance of Aedes albopictus and Culex quinquefasciatus in 24 hours cycle in residential areas, Penang using different trapping methods. Serangga 24(1): 17-41.
Widoretno, N., Rachmawati, D.A., Nurdian, Y. & Armiyanti, Y. 2018. Comparing effectiveness of hay infusion and sugar fermentation solution as ovitrap’s attractants to Aedes aegypti. Qanun Medica 2(2): 19-24.
Williams, C.R., Azil, A.H. & Ritchie, S.A. 2019. Should we bother doing dengue vector surveillance, and if so, how should we do it?. International Journal of Public Health Research 9(2): 1135-1139.
Wong, J., Stoddard, S.T., Astete, H., Morrison, A.C. & Scott, T.W. 2011. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Neglected Tropical Diseases 5(4): e1015.
World Health Organization (WHO). 2007. Pyriproxyfen in drinking-water. Background document for development of WHO guidelines for drinking water quality. Geneva: World Health Organization (WHO/SDE/WSH/07.01/10).
World Health Organization (WHO). 2018. Ninth meeting of the WHO Vector Control Advisory Group. Geneva: World Health Organization (WHO/CDS/VCAG/2018.05).
Yazan, L.S., Paskaran, K., Gopalsamy, B. & Majid, R.A. 2020. Aedestech mosquito home system prevents the hatch of Aedes mosquito eggs and reduces its population. Pertanika Journal of Science & Technology 28(1): 263-278.
Refbacks
- There are currently no refbacks.