EXPRESSION PATTERNS OF DETOXIFICATION ENZYMES UNDERLYING SUSCEPTIBILITY STATUS IN Culex quinquefasciatus SAY (DIPTERA: CULICIDAE) FROM DENGUE HOTSPOT AREAS IN PENANG, MALAYSIA

Ahmadu Bukar, Sarah Abdul Razak, Siti Nasuha Hamzah

Abstract


Mosquito control remains a primary strategy for managing vector-borne diseases, relying heavily on various classes of insecticides including organophosphates, organochlorines, carbamates, and pyrethroids. However, widespread and prolonged usage has led to increasing insecticide resistance in mosquito populations. This study investigated resistance levels and detoxification enzyme activities in Culex quinquefasciatus larvae collected from two field sites (Minden and Bayan strains) in Pulau Pinang, Malaysia, compared to a susceptible laboratory strain (VCRU strain). Insecticide susceptibility bioassays were carried out using technical-grade malathion (96.0%), temephos (92.6%), deltamethrin (99.7%), and pirimiphos-methyl. Biochemical assays were performed to quantify the activities of acetylcholinesterase (AChE), cytochrome P450 monooxygenases (CYP450), glutathione S-transferases (GST), and esterases. The bioassay results showed varying resistance ratios (RR50) ranging from 3.0- to 10-fold in field strains, with the highest resistance in the Bayan strain exposed to deltamethrin (10-fold), and the lowest in the Minden strain treated with malathion (0.57-fold). These findings confirm resistance to malathion, pirimiphos-methyl, temephos, and deltamethrin in local Cx. quinquefasciatus populations, associated with increased detoxification enzyme activity. The study highlights the need for continuous resistance monitoring and supports alternative vector control strategies such as outdoor residual spraying (ORS) to manage insecticide-resistant mosquito populations in urban habitats.


Full Text:

PDF

References


Ab Hamid, N., Noor, S.N.M., Susubi, J., Isa, N.R., Rodzay, R.M., Effendi, A.M.B., Hafisool, A.A., Azman, F.A., Abdullah, S.F. & Zaman, M.K.K. 2020. Semi-field evaluation of the bio-efficacy of two different deltamethrin formulations against Aedes species in an outdoor residual spraying study. Heliyon 6(1): e03293.

Aboulfadl, S., Mellouki, F., Ameur, B. & Faraj, C. 2022. Insecticide resistance in the disease vector Culex pipiens in Morocco: Intensity, mechanisms, and contribution in insecticide resistance management. Psyche: A Journal of Entomology 2022: 5576317.

Bautista, M.A.M., Miyata, T., Miura, K. & Tanaka, T. 2009. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry and Molecular Biology 39(1): 38–46.

Bharati, M. & Saha, D. 2018. Differential expression of carboxylesterases in larva and adult of Culex quinquefasciatus Say (Diptera: Culicidae) from sub-Himalayan West Bengal, India. International Journal of Tropical Insect Science 38(3): 303–312.

Chamnanya, S., Yanola, J., Nachaiwieng, W., Lumjuan, N., Walton, C. & Somboon, P. 2022. Novel real-time PCR assay detects widespread distribution of knockdown resistance (kdr) mutations associated with pyrethroid resistance in the mosquito, Culex quinquefasciatus, in Thailand. Pesticide Biochemistry and Physiology 186: 105172.

de Melo, A.R., Garcia, I.J.P., Serrão, J.E., Santos, H.L., dos Santos Lima, L.A.R. & Alves, S.N. 2018. Toxicity of different fatty acids and methyl esters on Culex quinquefasciatus larvae. Ecotoxicology and Environmental Safety 154: 1–5.

Domingues, I., Agra, A.R., Monaghan, K., Soares, A.M.V.M. & Nogueira, A.J.A. 2010. Cholinesterase and glutathione S-transferase activities in freshwater invertebrates as biomarkers to assess pesticide contamination. Environmental Toxicology and Chemistry 29(1): 5–18.

Enayati, A.A., Ranson, H. & Hemingway, J. 2005. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14(1): 3–8.

Farouk, S.A., Avicor, S.W. & Hamzah, S.N. 2021. Enzymatic profile of Aedes albopictus upon continuous exposure to insecticides throughout Penang, Malaysia. International Journal of Tropical Insect Science 41(2): 1451–1459.

Fodjo, B.K., Koudou, B.G., Tia, E., Saric, J., N’Dri, P.B., Zoh, M.G., Gba, C.S., Kropf, A., Kesse, N.B. & Chouaïbou, M.S. 2018. Insecticides resistance status of Anopheles gambiae in areas of varying agrochemical use in Côte d’Ivoire. BioMed Research International 2018: 2874160.

Gao, S., Guo, X., Liu, S., Li, S., Zhang, J., Xue, S., Tang, Q., Zhang, K. & Li, R. 2023. Cytochrome P450 gene CYP6BQ8 mediates terpinen-4-ol susceptibility in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Bulletin of Entomological Research 113(2): 271–281.

Gong, Y., Li, T., Feng, Y. & Liu, N. 2017. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Scientific Reports 7: 587.

Gong, Y., Li, T., Li, Q., Liu, S. & Liu, N. 2022. The central role of multiple P450 genes and their co-factor CPR in the development of permethrin resistance in the mosquito Culex quinquefasciatus. Frontiers in Physiology 12: 789234.

Hamzah, S.N. & Alias, Z. 2016. Developmental expression and oxidative stress induction of proteome of glutathione S-transferases in Aedes albopictus (Diptera: Culicidae). Journal of Asia-Pacific Entomology 19(3): 869–875.

Hamzah, S.N., Avicor, S.W., Alias, Z., Razak, S.A., Bakhori, S.K.M., Hsieh, T.C., Syanizam, N.N. & Farouk, S.A. 2022. In vivo glutathione S-transferases superfamily proteome analysis: An insight into Aedes albopictus mosquitoes upon acute xenobiotic challenges. Insects 13(11): 1028.

Hamzah, S.N., Farouk, S.A. & Alias, Z. 2019. Isoenzymes of Aedes albopictus (Diptera: Culicidae) glutathione S-transferases: Isolation and expression after acute insecticide treatment. Pesticide Biochemistry and Physiology 153:116–121.

Hassan, F., Singh, K.P., Ali, V., Behera, S., Shivam, P., Das, P. & Dinesh, D.S. 2019. Detection and functional characterization of sigma class GST in Phlebotomus argentipes and its role in stress tolerance and DDT resistance. Scientific Reports 9: 19636.

Hemingway, J. & Brogdon, W.G. 1998. Techniques to detect insecticide resistance mechanisms (field and laboratory manual). United Kingdom: World Health Organization.

Jangir, P.K. & Prasad, A. 2022. Spatial distribution of insecticide resistance and susceptibility in Aedes aegypti and Aedes albopictus in India. International Journal of Tropical Insect Science 42(2): 1019–1044.

Jin, M., Peng, Y., Peng, J., Zhang, H., Shan, Y., Liu, K. & Xiao, Y. 2023. Transcriptional regulation and overexpression of GST cluster enhances pesticide resistance in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Communications Biology 6: 1064.

Karunaratne, S., De Silva, W., Weeraratne, T.C. & Surendran, S.N. 2018. Insecticide resistance in mosquitoes: Development, mechanisms and monitoring. Ceylon Journal of Science 47(4): 299–309.

Khan, H. A.A., Akram, W., Shehzad, K. & Shaalan, E.A. 2011. First report of field evolved resistance to agrochemicals in dengue mosquito, Aedes albopictus (Diptera: Culicidae), from Pakistan. Parasites & Vectors 4: 146.

Kim, S., Seong, K.M. & Lee, S.H. 2023. Acetylcholine titre regulation by non-neuronal acetylcholinesterase 1 and its putative roles in honey bee physiology. Insect Molecular Biology 32(2): 173–183.

Kotewong, R., Duangkaew, P., Srisook, E., Sarapusit, S. & Rongnoparut, P. 2014. Structure–function relationships of inhibition of mosquito cytochrome P450 enzymes by flavonoids of Andrographis paniculata. Parasitology Research 113: 3381–3392.

Leong, C.-S., Vythilingam, I., Liew, J.W-K., Wong, M-L., Wan-Yusoff, W.S. & Lau, Y-L. 2019. Enzymatic and molecular characterization of insecticide resistance mechanisms in field populations of Aedes aegypti from Selangor, Malaysia. Parasites & Vectors 12: 236.

Leong, C.S., Chen, C.D., Low, V.L., Karen-Chia, H.M., Azidah, A.A. & Sofian-Azirun, M. 2014. Multiple resistance of Culex vishnui Theobald against four major classes of insecticides in an agricultural area in Sekinchan, Selangor, Malaysia. Tropical Biomedicine 31(2): 241–260.

Lin, S., Wei, J., Yang, B., Zhang, M. & Zhuo, R. 2022. Bioremediation of organic pollutants by white rot fungal cytochrome P450: The role and mechanism of CYP450 in biodegradation. Chemosphere 301: 134776.

Liu, N., Li, M., Gong, Y., Liu, F. & Li, T. 2015. Cytochrome P450s—Their expression, regulation, and role in insecticide resistance. Pesticide Biochemistry and Physiology 120: 77–81.

Low, V.L., Chen, C.D., Lee, H.L., Tan, T.K., Chen, C.F., Leong, C.S., Lim, YA. L., Lim, P.E., Norma-Rashid, Y. & Sofian-Azirun, M. 2013. Enzymatic characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus Say (Diptera: Culicidae). PLoS ONE 8(11): e79928.

Muthusamy, R. & Shivakumar, M.S. 2015. Effect of lambda cyhalothrin and temephos on detoxification enzyme systems in Culex quinquefasciatus (Diptera: Culicidae). Journal of Environmental Biology 36(1): 235–239.

Nazni, W.A., Lee, H.L. & Sofian-Azirun, M. 2019. Insecticide susceptibility status of dengue vectors Aedes aegypti and Aedes albopictus in Penang, Malaysia. Tropical Biomedicine 36(2): 273–284.

Papadopoulos, A.I., Polemitou, I., Laifi, P., Yiangou, A. & Tananaki, C. 2004. Glutathione S-transferase in the developmental stages of the insect Apis mellifera macedonica. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 139(1–3): 87–92.

Pedersen, K.E., Pedersen, N.N., Meyling, N.V., Fredensborg, B.L. & Cedergreen, N. 2020. Differences in life stage sensitivity of the beetle Tenebrio molitor towards a pyrethroid insecticide explained by stage-specific variations in uptake, elimination and activity of detoxifying enzymes. Pesticide Biochemistry and Physiology 162: 113–121.

Pusawang, K., Sattabongkot, J., Saingamsook, J., Zhong, D., Yan, G., Somboon, P., Wongpalee, S.P., Cui, L., Saeung, A. & Sriwichai, P. 2022. Insecticide susceptibility status of Anopheles and Aedes mosquitoes in malaria and dengue endemic areas, Thai–Myanmar border. Insects 13(11): 1035.

Rahim, J., Ahmad, A.H., Kassim, N.F.A., Ahmad, H., Ishak, I.H., Rus, A.C. & Maimusa, H.A. 2016. Revised discriminating lethal doses for resistance monitoring program on Aedes albopict us against temephos and malathion in Penang Island, Malaysia. Journal of the American Mosquito Control Association 32(3): 210–216.

Ramkumar, G., Muthusamy, R., Narayanan, M., Dhanapal, R., Karthik, C., Shivakumar, M. S., Malathi, G. & Kariyanna, B. 2022. Pretreatment of mosquito larvae with ultraviolet-B and nitropolycyclic aromatic hydrocarbons induces increased sensitivity to permethrin toxicity. Heliyon 8(10): e11094.

Riaz, M.A., Poupardin, R., Reynaud, S., Strode, C., Ranson, H. & David, J-P. 2009. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides: Role of detoxification genes in response to xenobiotics. Aquatic Toxicology 93(1): 61–69.

Rohani, A., Fakhriy, H.A., Suzilah, I., Zurainee, M.N., Najdah, W.M.A.W., Ariffin, M.M., Shakirudin, N.M., Afiq, M.S.M., Jenarun, J., & Tanrang, Y. 2020. Indoor and outdoor residual spraying of a novel formulation of deltamethrin K-Othrine® (Polyzone) for the control of simian malaria in Sabah, Malaysia. PLoS ONE 15(5): e0230860.

Rosilawati, R., Lau, K.W. & Chen, C.D. 2021. Resistance mechanisms of Culex mosquitoes in urban areas of Peninsular Malaysia. Serangga 26(1): 89–101.

Santos, N.D. de L., Albuquerque, L.P. de, de Amorim, M.M.R., de Oliveira Silva, J.N., Procópio, T.F., Santos, P.É.M. dos, Paiva, P.M.G., Barros, M.R., Napoleão, T.H. & Pontual, E.V. 2023. Effects of lectin preparations from Microgramma vacciniifolia rhizomes on the survival, digestive enzymes, and acetylcholinesterase activity of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Macromol 3(3): 451–462.

Sarkar, M., Bhattacharyya, I.K., Borkotoki, A., Goswami, D., Rabha, B., Baruah, I. & Srivastava, R.B. 2009. Insecticide resistance and detoxifying enzyme activity in the principal bancroftian filariasis vector, Culex quinquefasciatus, in northeastern India. Medical and Veterinary Entomology 23(2): 122–131.

Shehu, I.K., Ahmad, H.B., Olayemi, I.K., Solomon, D., Ahmad, A.H. & Salim, H. 2023. Insecticide susceptibility status in two medically important mosquito vectors, Anopheles gambiae and Culex quinquefasciatus, to three insecticides commonly used in Niger State, Nigeria. Saudi Journal of Biological Sciences 30(2): 103524.

Song, X., Zhong, Q., Ji, Y., Zhang, Y., Tang, J., Feng, F., Bi, J., Xie, J. & Li, B. 2022. Characterization of a sigma class GST (GSTS6) required for cellular detoxification and embryogenesis in Tribolium castaneum. Insect Science 29(1): 215–229.

Strode, C., Steen, K., Ortelli, F. & Ranson, H. 2006. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Molecular Biology 15(4): 523–530.

Subahar, R., Aulia, A.P., Yulhasri, Y., Felim, R.R., Susanto, L., Winita, R., El Bayani, G.F. & Adugna, T. 2022. Assessment of susceptible Culex quinquefasciatus larvae in Indonesia to different insecticides through metabolic enzymes and the histopathological midgut. Heliyon 8(12): e12234.

Tao, F., Si, F., Hong, R., He, X., Li, X., Qiao, L., He, Z., Yan, Z., He, S. & Chen, B. 2022. Glutathione S-transferase (GST) genes and their function associated with pyrethroid resistance in the malaria vector Anopheles sinensis. Pest Management Science 78(10): 4127–4139.

Vivekanandhan, P., Thendralmanikandan, A., Kweka, E.J. & Mahande, A.M. 2021. Resistance to temephos in Anopheles stephensi larvae is associated with increased cytochrome P450 and α-esterase genes overexpression. International Journal of Tropical Insect Science 41(3): 1985–1990.

Wan Najdah, W.M.A., Sofian-Azirun, M. & Nazni, W.A. 2020. Enzymatic activity and insecticide resistance in Malaysian Culex quinquefasciatus. Serangga 25(2): 123–135.

World Health Organization (WHO). 2005. Guidelines for laboratory and field testing of mosquito larvicides (WHO/CDS/WHOPES/GCDPP/2005.13). World Health Organization.

https://apps.who.int/iris/handle/10665/69101 [1 September 2024].

Yunta, C., Hemmings, K., Stevenson, B., Koekemoer, L.L., Matambo, T., Pignatelli, P., Voice, M., Nász, S. & Paine, M.J.I. 2019. Cross-resistance profiles of malaria mosquito P450s associated with pyrethroid resistance against WHO insecticides. Pesticide Biochemistry and Physiology 161: 61–67.

Zayed, A.B., Moselhy, W.A., Mostafa, A.A., Mahmoud, H.I. & Hassan, S.H. 2019. Physical and chemical factors of breeding sites affecting susceptibility and biochemical activity of mosquito, Culex pipiens (Diptera: Culicidae) to some insecticides. International Journal of Ecotoxicology and Ecobiology 4(2): 51–57.

Zhang, C., Shi, Q., Li, T., Cheng, P., Guo, X., Song, X. & Gong, M. 2021. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett. PLoS Neglected Tropical Diseases 15(3): e0009237.


Refbacks

  • There are currently no refbacks.