LACCASES REPERTOIRE OF A SUBTERRANEAN TERMITE Coptotermes curvignathus HOLMGREN (BLATTODEA: RHINOTERMITIDAE)
Abstract
Coptotermes curvignathus is a subterranean termite species that vigorously feed on living-tree. The cellulose, hemicelluloses, lignin components in the wood are too robust for many organisms to break down and extract energy from but they serve as main carbon and energy sources for C. curvignathus. The ability of this subterranean termite thrive on wood diet may attribute by its array of laccase repertoire. Laccases are known for many functions including detoxification of plant tissues via xenobiotic pathway, and most importantly for termite is lignin modification. This paper highlighted the type of laccases produced by C. curvignathus based on transcriptomic data that were generated from 500 termites’ digestive system using Illumina HiSeq 2000. Raw data was trimmed and assembled by SOLEXAQA and Bowtie before loaded into Gene Ontology based data mining software, Blast2GO (B2G). The result showed that, C. curvignathus expressed diverse laccase genes that were phylogenetically similar to other termites’ laccases and distinctly related to fungal or bacterial laccases. Other than providing laccase genes sequences for further gene and enzyme characterization, the result of this study is the first insight into C. curvignathus laccase repertoire that is important to elucidate how C. curvignathus could digest wood efficiently from either intact or partially hydrolyzed wood.
Full Text:
PDFReferences
Assavanig, A., Amornkitticharoen, B., Ekpaisal, N., Meevootisom, V. & Flegel, T.W. 1992. Isolation, characterization and function of laccase from Trichoderma. Applied Microbiology and Biotechnology 38: 198–202.
Benfield, G., Bocks, S.M., Bromley, K. & Brown, B.R. 1964. Studies in fungal and plant laccases. Phytochemistry 3: 79 – 88.
Cox, M.P., Peterson, D.A. & Biggs, P.J. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. 2010. BMC Bioinformatics 11: 485.
Diamantidis, G., Effosse, A., Potier, P. & Bally, R. 2000. Purification and characterization of the first bacterial laccase in rhizospheric bacteria, Azospirillium lipoferum. Soil Biology and Biochemistry 32: 919–927.
Floudas, D., Binder, M., Riley, R., Barry, K., Blanchette, R.A., Henrissat, B., Martínez, A.T., Otillar, R., Spatafora, J.W., Yadav, J.S., Aerts, A., Benoit, I., Boyd, A., Carlson, A., Copeland, A., Coutinho, P.M., de Vries, R.P., Ferreira, P., Findley, K., Foster, B., Gaskell, J., Glotzer, D., Górecki, P., Heitman, J., Hesse, C., Hori, C., Igarashi, K., Jurgens, J.A., Kallen, N., Kersten, P., Kohler, A., Kües, U., Kumar, T.K., Kuo, A., LaButti, K., Larrondo, L.F., Lindquist, E., Ling, A., Lombard, V., Lucas, S., Lundell, T., Martin, R., McLaughlin, D.J., Morgenstern, I., Morin, E., Murat, C., Nagy, L.G., Nolan, M., Ohm, R.A., Patyshakuliyeva, A., Rokas, A., Ruiz-Dueñas, F.J., Sabat, G., Salamov, A., Samejima, M., Schmutz, J., Slot, J.C., St John, F., Stenlid, J., Sun, H., Sun, S., Syed, K., Tsang, A., Wiebenga, A., Young, D., Pisabarro, A., Eastwood, D.C., Martin, F., Cullen, D., Grigoriev, I.V. & Hibbett, D.S. 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715–1719.
Geng, A., Wu, J., Xie, R.R., Li, X., Chang, F.X. & Sun, J.Z. 2018. Characterization of a laccase from a wood‐feeding termite, Coptotermes formosanus. Insect Science 25: 251-258.
Götz, S., Garcia-Gomez, J.M., Terol, J., Williams, T.D., Nagaraj, S.H., Nueda, M.J., Robles, M., Talŏn, M., Dopazo, J. & Conesa, A. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36: 3420–3435.
Ke, J., Laskar, D.D., Gao, D.F. & Chen, S.L. 2012. Advanced biorefinery in lower termite‐effect of combined pretreatment during the chewing process. Biotechnology for Biofuels 5: 11.
Levine, W.G. 1965. Laccase: A Review. In Peisach, J. (ed.). The Biochemistry of Copper, pp. 371–385. New York. Academic Press Inc.
Madhavi, V. & Lele, S.S. 2009. Laccase: Properties and applications. Bioresources 4: 1694–1717.
Messerschmidt, A. 1997. Multi-copper Oxidases. Singapore: World Scientific Pub Co Inc.
Morozova, O.V., Shumakovich, G.P., Shleev, S.V. & Yaropolov, Y.A. 2007. Laccase-mediator systems and their applications: a review. Applied Biochemistry and Microbiology 43: 523–535.
Octavio, L.C., Irma, P.P.M.C., Ricardo, B.R.J. & Franscisco, V.O. 2006. Laccases. In Guevara-Gonzalez, R.G. & Torres-Pacheco, I. (ed.). Advances in Agricultural and Food Biotechnology. India, pp. 323-340. Kerala, India: Departamenta de Ingenieria Bioquimica, Instituto Technologico de Celaya.
Randhawa, H.S., Kowshik, T. & Khan, Z.U. 2003. Decayed wood of Syzygium cumini and Ficus religiose living trees in Delhi/New Delhi metropolitan area as natural habitat of Cryptococcus neoformans. Medical Mycology 41: 199–209.
Schultz, M.H., Zerbino, D.R., Vingron, M. & Birney, E. 2012. Oases: Robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28: 1086–1092.
Sigoillot, F.D., Lyman, S., Huckins, J.F., Adamson, B., Chung, E., Quattrochi, B. & King, R.W. 2012. A Bioinformatics method identifies prominent off-target transcripts in RNAi screens. Nature Methods 9: 363-366.
Solomon, E.I., Sundaram, U.M. & Machonkin, T.E. 1996. Multicopper oxidases and oxygenases. Chemical Reviews 96 : 2563–2605.
Solomon, E.I., Chen, P., Metz, M., Lee, S.K. & Palmer, A.E., 2001. Oxygen binding, activation, and reduction to water by copper proteins. Angewandte Chemie International Edition English 40: 4570–4590.
Sun, J.Z. & Scharf, M.E. 2010. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science 17: 163–165.
Tamura, K., Peterson, D., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony. Molecular Biology and Evolution 28: 2731–2739.
Thapa, R.S. 1982. Termites of Sabah (East Malaysia). Sabah: Sabah Forest Record.
Tho, Y.P. 1992. Termites of Peninsular Malaysia. Malayan Forest Records No. 36. Kuala Lumpur: Forest Research Institute Malaysia.
Thompson, J.D., Higgins, D.G. & Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weigh matrix choice. Nucleic Acids Research 22: 4673–4680.
Thurston, C.F. 1994. The structure and functal of fungal laccases. Microbiology 140: 19–26.
Xu, F. 1996. Oxidation of phenols, anilines, and benzenethiols by fungal laccases: correlation between activity and redox potentials as well as halide inhibition. Biochemistry 35: 7608–7614.
Yang, C.H, Guo, J.Y. & Wan, F.H. 2017. Secretory laccase1 in Bemisia tabici MED is involved in whitefly-plant interaction. Scientific Reports 7: 3623.
Zerbino, D.R. & Birney, E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821 – 829.
Refbacks
- There are currently no refbacks.