TOXICITY STUDY OF INSECTICIDE FORMULATIONS ON STINGLESS BEE Heterotrigona itama (COCKERELL) (APIDAE: MELIPONINI)

Siti Asma' Samsudin, Nur Azura Adam, Norida Mazlan, Puteri Edaroyati Megat Wahab, Wan Nur Asiah Wan Mohd Adnan, Mohamad Syukri Tan Shilan

Abstract


Application of insecticides is a must in crop cultivation to produce high quality   product in market. The excess application of insecticides is a major concern as it could harm insect pollinators, which results in broken colonies of pollinator especially stingless bee. This study aimed to determine the toxicity level of selected insecticides toward stingless bee populations. The bioassay on the toxicity level that cause mortality on stingless bee population, Heterotrigona itama population was assessed with five common insecticides used in rock melon cultivation, namely deltamethrin, cypermethrin, imidacloprid, abamectin and malathion. Imidacloprid exhibited the highest toxicity causing 50% mortality after 24 hours with a concentration as low as 57.53ppm. The insecticide with the lowest toxicity on Heterotrigona itama was malathion, where a high concentration of 500.76 ppm resulted in 50% mortality after 24 hours. Results reaffirmed that the use of highly toxic insecticides are detrimental to populations of pollinators.


Full Text:

PDF

References


Abbott, W.S. 1925. Classic Paper: Abbott's Formula a method of computing the effectiveness of an insecticide. Journal of Economic Entomology.18: 265.

Aljedani, D.M. 2017. Effects of abamectin and deltamethrin to the foragers honey bee workers of Apis mellifera jemenatica (Hymenoptera: Apidae) under laboratory conditions. Saudi Journal of Biological Sciences 24(5): 1007-1015.

Bassett, J.L., Badiou, A. & Belzunces, L.P. 2019. In vivo metabolic fate of [C-14]-acetamiprid in six biological compartments of the honeybee, Apis mellifera L. Pest Managament Science 61: 742–748.

Blacquiere, T., Smagghe, G., Gestel, C.A.M.V. & Mommaerts, V. 2012. Neonicotinoids in bees: A review on concentrations, side-effects and risk assessment. Ecotoxicology 21: 973–992.

Carvalho, S.M., Carvalho, G.A., Carvalho, C.F., Bueno Filho, J.S.S. & Baptista A.P.M. 2009. Toxicidade de acaricidas/inseticidas empregados na citricultura para abelha africanizada Apis mellifera L. 1758 (Hymenoptera: Apidae). Araq Institute Biology 76: 597–606.

Cahill, M., Gorman, K., Day, S., Denholm, I., Elbert, A. & Nauen, R. 1996. Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomology Research 86: 343–349.

Chhillar, B.S., Gulati, R. & Bhatnagar, P. 2007. Agricultural Acarology. New Delhi: Daya Publishing House

Del Sarto, M.CL., Oliveira, E.E., Guedes, R.N.C & Campos, L.A.O. 2014. Differential insecticide susceptibility of the Neotropical stingless bee Melipona quadrifasciata and the honey bee Apis mellifera. Apidologie 45(5): 626-636.

Decourtye, A., Devillers, J., Genecque, E., Menach, K.L., Budzinski, H., Cluzeau, S. & Pham-Delègue, M.H. 2005. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Archives of Environmental Contamination and Toxicology 48(2): 242-250.

DiBartolomeis, M., Kegley, S., Mineau, P., Radford, R. & Klein, K. 2019. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS One 14:8.

Elbert, A., Haas, M., Springer, B., Thielert, W. & Nauen, R. 2008. Applied aspects of neonicotinoid uses in crop protection. Pest Managament Science 64: 1099–1105.

Franceschinelli, E.V., Neto, C.M.S., Lima, F.G., Gonçalves, B.B., Bergamini, L.L., Bergamini, B.A.R. & Elias, M.A. 2013. Native bees pollinate tomato flowers and increase fruit production. Journal of Pollination Ecology 11: 41-45.

Gallo, M.A. & Lawryk, N.J. 2005. Organic phosphorus pesticides. In. Hayes, W.J. Jr. & Laws, E.R. Jr. (eds.). Handbook of Pesticide Toxicology 3: 976–985.

Gervais, J.A., Luukinen, B., Buhl, K. & Stone, D. 2010. Malathion General Fact Sheet. Oregon: National Pesticide Information Center, Oregon State University Extension Services.

Ghazi, R., Zulqurnain, N.S. & Azmi, W.A. 2018. Chapter 6 - Melittopalynological studies of stingless bees from the East Coast of Peninsular Malaysia. In. Vit, P., Pedro, S. & Roubik, D. (eds.). Pot-Pollen in Stingless Bee Melittology, pp. 77-88. Switzerland: Springer.

Gill, R., Ramos-Rodriguez, O. & Raine, N., 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491: 105–109.

Goldman, R.L., Thompson, B.H. & Daily, G.C. 2007. Institutional incentives for managing the landscape: Inducing cooperation for the production of ecosystem services. Ecological Economics 64(2):333-343.

Godfray, H.C.J., Blacquiere, T., Field, L.M., Hails, R.S., Petrokofsky, G., Potts, S.G. & McLean, A.R. 2014. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings of the Royal Society B. Biological Sciences 28(1786): 50-58.

Groten, J.P., Feron, V.J. & Sühnel, J. 2001. Toxicology of simple and complex mixtures. Pharmacological Sciences 22(6): 316-322.

Hassan Iqbal., Rashid, M.A., Begum, R.A. & Shahjahan, R.M. 2012. Toxicity of cypermethrin and malathion on rice weevil Sitophilus oryzae (L.) and their effect on esterase isozymes. Journal of Chemical, Biological and Physical Sciences (JCBPS) 3(1): 305.

Johnson, R.M., Ellis, M.D., Mullin, C.A. & Frazier, M. 2010. Pesticides and honey bee toxicity–USA. Apidologie 41(3) :312-331.

Kaur, R., Choudhary, D., Bali, S., Singh, B.S., Varinder, S., Md Altamash Ahmad, Nidhi Rani, Thakur, G.S. & Balakumar C. 2024. Pesticides: An alarming detrimental to health and environment. Science of The Total Environment 915: 170113

Laurino, D., Porporato, M., Patetta, A. & Manino, A. 2011. Toxicity of neonicotinoid insecticides to honey bees: Laboratory tests. Bulletin of Insectology 64(1): 107-113.

LeOra Software. 2003. POLO-PC-A User Guide to Probit or Logit Analysis. Berkeley, CA: LeOra Software.

Martelli, F., Zhongyuan, Z., Wang, J., Wong, C.O., Karagas, N.E., Roessner, U. & Batterham, P. 2020. Low doses of the neonicotinoid insecticide imidacloprid induce ROS triggering neurological and metabolic impairments in Drosophila. Proceedings of the National Academy of Sciences 117(41): 25840- 25850.

Mario, N., Palladini, G., Milani, P., Foli, A., Obici, L., Lavatelli, F. & Merlini, G. 2014. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: Long-term results of a risk-adapted approach. Haematologica 99(4): 743.

Matthew, G.A. 2018. Application of Pesticide. A History of Pesticide. CABI Digital Library.

Nguyen, B.K., Saegerman, C., Pirard, C., Mignon, J., Widart, J., Tuirionet, B., Verheggen, F.J., Berkvens, D., De Pauw, E. & Haubruge, E. 2009. Does imidacloprid seed-treated maize have an impact on honey bee mortality? Journal Economy Entomology 102: 616– 623.

Nica, D., Bianu, E. & Chioveanu, G. 2004. A case of acute intoxication with deltamethrin in bee colonies in Romania. Apiacta 39(1): 71-77.

Ponnuchamy, R., Bonhomme, V., Prasad, S., Das, L., Patel, P., Gaucherel, C., Pragasam, A. & Anupama, K. 2014. Honey pollen: Using Melissopalynology to understand foraging preferences of bees in tropical South India. PLOS ONE 9(7): e101618.

Petruzzello, L., Coraggio, I. & Leubner-Metzger, G. 2014. Ethylene promotes ethylene biosynthesis during pea seed germination by positive feedback regulation of 1-aminocyclo-propane-1-carboxylic acid oxidase. Planta 211: 144–155.

Quiroga-Murcia, D.E., Zotti, M.J., de Polanía, I.Z. & Pech-Pech, E.E. 2017. Toxicity evaluation of two insecticides on Tetragonisca angustula and Scaptotrigona xanthotricha (Hymenoptera: Apidae). Agronomía Colombiana 35(3): 340-349.

Ramirez-Romero, R., Chaufaux, J. & Pham-Delègue, M.H. 2005. Effects of Cry1Ab protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie 36(4): 601-611.

Rhodes, H.A., Wilson, W.T., Sonnet, P.E. & Stoner, A. 2006. Exposure of Apis mellifera (Hymenoptera: Apidae) to bee-collected pollen containing residues of micro encapsulated methyl parathion. Environment Entomology 8: 944–948.

Saganuwan, A.S. 2011. A modified arithmetical method of reed and muench for determination of a relatively ideal median lethal dose (LD50) African Journal Pharmacy 5(12): 1543–1546.

Sanchez-Bayo, F. & Goka, K. 2014. Pesticide residues and bees–a risk assessment. PloS One 9(4): 4482.

Sayyed, A.H., Saeed, S., Noor-Ul-Ane, M. & Crickmore, N. 2008. Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology 101(5): 1658-1666.

Soldà, L., Tapparo, A. & Giorio, C., 2013. UHPLC-DAD Method for the determination of neonicotinoid insecticides in single bees and its relevance in honeybee colony loss investigations. Analitycal Bio Chemistry 405: 1007–1014.

Smith, H.A. & Giurcanu, M.C. 2013.Residual effects of new insecticides on egg and nymph densities of Bemisia tabaci (Hemiptera: Aleyrodidae). Florida. Entomology 96: 504–511.

Suchail, S., Guez, D. & Belzunces, L.P. 2001. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry: An International Journal 20(11): 2482-2486.

Tomlin, C.D. 2000. The Pesticide Manual: A World Compendium. Edition 15. British: Crop Production Council.

Tomé, H.V.V., Barbosa, W.F., Corrêa, A.S., Gontijo, L.M., Martins, G.F. & Guedes, R.N.C. 2015. Reduced‐risk insecticides in Neotropical stingless bee species: Impact on survival and activity. Annuals of Applied Biology 167(2): 186-196.

Valdovinos-Nuñez, G., Quezada-Euán, J.J., Ancona-Xiu, Patricia, M.V., Humberto, C. & Angelica, R. 2009. Comparative Toxicity of Pesticides to Stingless Bees (Hymenoptera: Apidae: Meliponini). Journal of Economic Entomology 102: 1737

Vidau, C., Diogon, M., Aufauvre, J., Fontbonne, R. & Viguès, B .2011. Exposure to Sublethal Doses of Fipronil and Thiacloprid Highly Increases Mortality of Honeybees Previously Infected by Nosema ceranae. PLOS ONE 6(6): 21.

Zhu, Y.C., Adamczyk, J., Rinderer, T., Yao, J., Danka, R., Luttrell, R. & Gore, J. 2015. Spray toxicity and risk potential of 42 commonly used formulations of row crop pesticides to adult honey bees (Hymenoptera: Apidae). Journal of Economic Entomology 108(6): 2640-2647.


Refbacks

  • There are currently no refbacks.