DIVERSITY AND ABUNDANCE OF HYMENOPTERAN SPECIES IN MIXED-USE AGRICULTURAL LANDSCAPE OF PUSAT PENYELIDIKAN PERTANIAN TUN RAZAK, PAHANG, MALAYSIA

Muhammad Haziq Aiman Aubaidellah, Nur Amalina Mohd Izam, Siti Khairiyah Mohd Hatta, Dzulhelmi Muhammad Nasir, Siti Asmah Muslim, Nur Athirah Abdullah

Abstract


Hymenoptera are ubiquitous insects crucial for ecosystem balance, fulfilling diverse ecological roles as pollinators, parasitoids, and predators, serving as valuable bioindicators of environmental health. While Hymenoptera communities in homogeneous agricultural landscapes have been extensively studied, research on heterogeneous mixed-use systems in Malaysia remains limited. Thus, the objectives of this study are to produce a checklist of Hymenoptera and to compare their diversity and composition across four land cover types namely oil palm plantations (OP), fruits orchards (FO), forest remnants (FR), and urban areas (UA) within the Pusat Penyelidikan Pertanian Tun Razak (PPPTR). A total of 3,455 individuals of Hymenoptera from 22 families and 148 morphospecies were identified during the study period. This study also found a significant difference in the abundance (df = 3, P<0.05) and richness (df= 3, P<0.05) of Hymenopteran species across different land covers of PPPTR, Pahang. Fruit orchards (H’ index = 5.624) and oil palm plantations (H’ index = 5.352) support a higher diversity of Hymenoptera in comparison to forest remnant (H’ index = 4.398) and urban areas (H’ index = 5.107), though in a smaller number of individuals. Forest remnant and urban areas hold different hymenopteran communities altogether, with 35% similarity from the orchard and oil palm plantation. This preliminary study shows that mixing different land cover patches within an agricultural landscape may promote different diversity and abundance of Hymenoptera. Cropped habitat apparently holds substantial value in providing resources for the Hymenoptera, through good management practices are needed to increase its population size. Additional study is needed to characterize the environmental variations between each cover type for a better understanding of the influence of mixed-use agricultural landscapes on Hymenoptera communities.


Full Text:

PDF

References


Abd Rahman, N.A., Dujali, S.N.A.M., Rahim, H.A., Yaakop, S., Ng, Y.F., Jin, S.T., Asraf, B. & Ahmad, Z.A.M. 2017. An assessment of the nocturnal insect diversity and abundance between an agricultural and suburban landscape in Peninsular Malaysia. Serangga 22(1): 1-21.

Arnold, J.E. 2022. Biological control services from parasitic Hymenoptera in urban agriculture. Insects 13(5): 467.

Azhar, A., Rizali, A., Pudjianto & Buchori, D. 2019. Managing sustainable agroecosystem: Study on diversity of parasitic Hymenoptera on riparian sites of oil palm and rubber plantation. IOP Conference Series: Earth and Environmental Science 325(1): 1-9

Braem, S., Crucifix, M., Nieberding, C. & Van Dyck, H. 2023. Microclimatic buffering in forest, agricultural, and urban landscapes through the lens of a grass‐feeding insect. Ecosphere, 14(7): p.e4611.

Cardoso, P., Barton, P.S., Birkhofer, K., Chichorro, F., Deacon, C., Fartmann, T., Fukushima, C.S., Gaigher, R., Habel, J.C., Hallmann, C.A., Hill, M.J., Hochkirch, A., Kwak, M.L., Mammola, S., Noriega, A.J., Orfinger, A.B, Pedraza, F., Pryke, J.S., Roque, F.O., Settele, J., Simaika, J.P., Stork, N.E., Suhling, F., Vorster, C. & Samways, M.J. 2020. Scientists’ warning to humanity on insect extinctions. Biological Conservation 242: 108426.

Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45-67.

Cheng, S., Lin, R., Yu, C., Sun, R. & Jiang, H. 2021. Toxic effects of seven pesticides to aphid parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae) after contact exposure. Crop Protection 145: 105634.

Choi, M.B., Kim, J.K., & Lee, J.W. 2012. Increase trend of social Hymenoptera (wasps and honeybees) in urban areas, inferred from moving-out case by 119 rescue services in Seoul of South Korea. Entomological Research 42(6): 308–319.

De Montaigu, C.T. & Goulson, D. 2024. Factors influencing butterfly and bumblebee richness and abundance in gardens. Science of The Total Environment 908: 167995.

Decocq, G., Andrieu, E., Brunet, J., Chabrerie, O., De Frenne, P., De Smedt, P., Deconchat, M., Diekmann, M., Ehrmann, S., Giffard, B. & Mifsud, E.G., 2016. Ecosystem services from small forest patches in agricultural landscapes. Current Forestry Reports 2(1): 30-44.

Donfack, L.S, Röll, A., Ellsäßer, F., Ehbrecht, M., Irawan, B., Hölscher, D., Knohl, A., Kreft, H., Siahaan, E.J., Sundawati, L. & Stiegler, C. 2021. Microclimate and land surface temperature in a biodiversity enriched oil palm plantation. Forest Ecology and Management 497: 119480.

FAO. 2018. The Importance of Bees and Other Pollinators for Food and Agriculture. Why bees Matter. Rome: FAO

Godoy, B.S., Faria, A.P.J., Juen, L., Sara, L. & Oliveira, L.G. 2019. Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecological Indicators 107: 105624.

González, E., Štrobl, M., Janšta, P., Hovorka, T., Kadlec, T. & Knapp, M., 2022. Artificial temporary non-crop habitats support parasitoids on arable land. Biological Conservation 265: 109409.

Goulet, H. & Huber, J.T. 1993. Hymenoptera Of The World: An Identification Guide To Families. Ottawa: Centre for Land and Biological Resources Research

Groff, S.C., Loftin, C.S., Drummond, F., Bushmann, S. & McGill, B. 2016. Parameterization of the InVEST Crop Pollination Model to spatially predict abundance of wild blueberry (Vaccinium angustifolium Aiton) native bee pollinators in Maine, USA. Environmental Modelling and Software 79: 1–9.

Hakim, L. & Hazmi, I.R. 2018. Diversity of Hymenoptera (Insecta) on different ages of oil palm in Lekir Plantation, Perak. AIP Conference Proceedings.

Halim, M., Aman-Zuki, A., Ahmad, S.Z.S., Din, A.M.M., Rahim, A.A., Masri, M.M.M, Zain, B.M. & Yaakop, S. 2018. Exploring the abundance and DNA barcode information of eight parasitoid wasp’s species (Hymenoptera), the natural enemies of the important pest of oil palm, bagworm, Metisa plana (Lepidoptera: Psychidae) toward the biocontrol approach and it's application in Malaysia. Journal of Asia-Pacific Entomology 21(4): 1359-1365.

Hatta, S.K.M., Jalaluddin, S., Shaifuddin, S., Osman, D.F., Jamil, M. & Ismail, A. 2015. Entomofaunal diversity of Hymenoptera at Hutan Simpan UiTM Jengka, Kem Sri Gading. Malaysian Applied Biology 44(3): 135–139.

Hatta, S.K.M., Zfarina, M.N., Hanysyam, M.M. & Fauziah, I. 2012. Entomofaunal diversity of Hymenoptera in FELDA Besout 6 oil palm plantation. 2012 IEEE Symposium on Business, Engineering and Industrial Applications, pp. 523-528.

Humphrey, J.W, Hawes, C., Peace, A.J, Ferris-Kaan, R. & Jukes, M.R. 1999. Relationships between insect diversity and habitat characteristics in plantation forests. Forest Ecology and Management 113(1): 11–21.

Idris, M.I., Fuat, S., Pejalis, P. & Yaakop, S. 2023. Kajian awalan: Hymenoptera pendebunga di Rizab Hidupan Liar Tengku Hassanal, Pahang, Malaysia [A preliminary study: pollinator hymenopterans of Tengku Hassanal Wildlife Reserve, Pahang, Malaysia]. Serangga. 28(3): 321-329.

Ikhsan, Z. & Hamid, H. 2020. The diversity and abundance of Hymenoptera insects on tidal swamp rice field in Indragiri Hilir District, Indonesia. Biodiversitas Journal of Biological Diversity 21(3): 1020-1026.

Ikhsan, Z. 2022. Diversity of Hymenoptera parasitoid species in rice cultivation and their correlation with environmental factors in tidal swamp land. Biodiversitas Journal of Biological Diversity 23(5): 2262-2269.

Jankielsohn, A. 2018. The importance of insects in agricultural ecosystems. Advances in Entomology 6(2): 62–73.

Kim, B.R., Shin, J., Guevarra, R.B., Lee, J.H., Kim, D.W., Seol, K.H., Lee, J.H., Kim, H.B. & Isaacson, R.E., 2017. Deciphering diversity indices for a better understanding of microbial communities. Journal of microbiology and biotechnology, 27(12), pp.2089-2093.

Madihah, W.N.H.W.A, Muhaimin, A., Din, M. & Yaakop, S. 2019. The diversity and abundance of potential hymenopteran parasitoids assemblage associated with Metisa plana (Lepidoptera: Psychidae) in three infested oil palms. AIP Conference Proceedings.

Mallinger, R.E., Gibbs, J. & Gratton C. 2016. Diverse landscapes have a higher abundance and species richness of spring wild bees by providing complementary floral resources over bees’ foraging periods. Landscape Ecology 31(7): 1523–1535.

Medan, D., Torretta, J.P., Hodara, K., de la Fuente, E.B. & Montaldo, N.H. 2011. Effects of agriculture expansion and intensification on the vertebrate and invertebrate diversity in the Pampas of Argentina. Biodiversity and Conservation 20: 3077-3100.

Mezger, D. & Moreau, C.S. 2016. Out of South-East Asia: Phylogeny and biogeography of the spiny ant genus Polyrhachis Smith (Hymenoptera: Formicidae). Systematic Entomology 41: 369–378.

Miglani, R., N. Parveen, S. S. Bisht, & A. Verma. 2020. Pesticide Toxicity to Insect Pollinators with Concern to Declining Population of Honey Bees (Insecta: Hymenoptera). In Arya & Kumar (eds.). Experimental Animal Science—Birds and Insects, pp. 247–255. New Delhi: Discovery Publishing House.

Narváez-Vásquez, A., Gaviria, J., Vergara-Navarro, E.V., Rivera-Pedroza, L. & Löhr, B. 2021. Ant (Hymenoptera: Formicidae) species diversity in secondary forest and three agricultural land uses of the Colombian Pacific Coast. Revista Chilena de Entomología 47(3): 441-458.

Naser, N.B.M, Ismail, W., Jamil, N.M., Nizam, N.A., Hambali, K.A. & Hatta, S.KM. 2021. Preliminary study on hymenopteran distributes on and abundance from island ecosystem of Tuba Island Forest Reserve, Langkawi. Journal of Tropical Resources and Sustainable Science 9(2): 135-141.

Neokosmidis, L., Tscheulin, T., Devalez, J. & Petanidou, T. 2018. Landscape spatial configuration is a key driver of wild bee demographics. Insect Science 25(1): 172-182.

Paiva, I.G., Auad, A.M., Veríssimo, B.A., Cláudio, L. & Silveira, P. 2020. Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil. Scientific Reports 10: 12112.

Peñalver-Cruz, A., Alvarez-Baca, J.K., Alfaro-Tapia, A., Gontijo, L. & Lavandero, B. 2019. Manipulation of agricultural habitats to improve conservation biological control in South America. Neotropical Entomology 48(6): 875-898.

Peng, M.H., Liu, K.L., Tsai, C.Y., Shiodera, S., Haraguchi, T.F., Itoh, M., Tseng, S.P., Yang, C.C.S., Singham, G.V., Tay, J.W. & Neoh, K.B., 2023. Urbanization influences the trophic position, morphology, and colony structure of invasive African big-headed ants (Hymenoptera: Formicidae) in Taiwan. Myrmecological News 33: 197-209.

Peters, R.S., Krogmann, L., Mayer, C., Donath, A., Gunkel, S., Meusemann, K., Kozlov, A., Podsiadlowski, L., Petersen, M., Lanfear, R., Diez, P.A.J., Kjer, K.M., Klopfstein, S., Meier, R., Polidori, C., Schmitt, T., Liu, S., Zhou, X., Wappler, T., Rust, J., Bernhard, M. & Niehuis, O. 2017. Evolutionary history of the Hymenoptera. Current Biology 27(7): 1013-1018.

Quicke, D.L. 2014. The Braconid and Ichneumonid Parasitoid Wasps: Biology, Systematics, Evolution and Ecology. New Jersey: John Wiley & Sons.

Razali, R., Din, AM.M. & Yaakop, S. 2016. Assemblages of Braconidae (Hymenoptera) at agricultural and secondary forest ecosystem. AIP Conference Proceedings 1784: 060045.

Reis, A.B., de Oliveira, M.S., dos Santos Souza, D., Gomes, D.S., da Silva, L.L., Martínez, L.C. & Serrão, J.E. 2024. Exploring the effects of the acaricide cyflumetofen on the vital organs of the honey bee Apis mellifera (Hymenoptera: Apidae) workers. Science of The Total Environment 929: 172640.

Rotondi, B.A.R., Bernaschini, M.L., Musicante, M.L. & Salvo, A. 2019. Forest microsite influence on captures of flying Hymenoptera by yellow pan traps. Entomologia Generalis 39(3/4): 193.

Sahito, H. & Sahito, H.A. 2014. Biological and morphological studies of cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) development under laboratory environment. Pakistan Journal of Entomology 2: 131-141.

Sánchez-Bayo, F. & Wyckhuys, K.A. 2021. Further evidence for a global decline of the entomofauna. Austral Entomology 60(1): 9-26.

Schläppi, D., Stroeymeyt, N. & Neumann, P. 2021. Unintentional effects of neonicotinoids in ants (Hymenoptera: Formicidae). Myrmecological News 31: 181-184.

Simplício, V.D.S, Abot, A.R, Shimbori, E.M., Garcia, F.R.M, Onody, H.C., Torres, L.C., Zazycki, L.C.F, De Souza, M.M. & Rodrigues, M.E. 2022. Natural Areas of Cerrado foster wasp (Hymenoptera) diversity in human modified landscapes. Environmental Entomology 51(2): 370-377.

Triplehorn, C.A. & Johnson, N.F. 2005. Borror And Delong’s Introduction To The Study Of Insects. Cole, Belmont, California, USA: Brooks. Brooks.

Tschopp, A., Riedel, M., Kropf, C., Nentwig, W. & Klopfstein, S. 2013. The evolution of host associations in the parasitic wasp genus Ichneumon (Hymenoptera: Ichneumonidae): Convergent adaptations to host pupation sites. BMC Evolutionary Biology 13: 1-13.

Turner, E.C. & Foster, W.A., 2009. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. Journal of Tropical Ecology 25(1): 23-30.

Verberk, W.C., Van Noordwijk, C.G.E. & Hildrew, A.G. 2013. Delivering on a promise: Integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32(2): 531-547.

Volpato, A., Ahmed, K.S., Williams, C.D., Day, M.F., O'Hanlon, A., Ruas, S., Rotchés‐Ribalta R, Mulkeen, C., Huallachain, D.O. & Gormally, M.J. 2020. Using Malaise traps to assess aculeate Hymenoptera associated with farmland linear habitats across a range of farming intensities. Insect Conservation and Diversity 13(3): 229-238.

Wang, X., Hua, F., Wang, L., Wilcove, D.S. & Yu, D.W. 2019. The biodiversity benefit of native forests and mixed‐species plantations over monoculture plantations. Diversity and Distributions 25(11): 1721-1735.

Wilson, E.S., Murphy, C.E., Rinehart, J.P., Yocum, G. & Bowsher, J.H. 2020. Microclimate temperatures impact nesting preference in Megachile rotundata (Hymenoptera: Megachilidae). Environmental Entomology 49(2): 296-303.

Zemp, D.C., Ehbrecht, M., Seidel, D., Ammer, C., Craven, D., Erkelenz, J., Irawan, B., Sundawati, L., Hölscher, D. & Kreft, H. 2019. Mixed-species tree plantings enhance structural complexity in oil palm plantations. Agriculture, Ecosystems & Environment 283: 106564.


Refbacks

  • There are currently no refbacks.